期刊文献+

ON UNIQUE CONTINUATION PROPERTIES FOR THE SUB-LAPLACIAN ON CARNOT GROUPS

ON UNIQUE CONTINUATION PROPERTIES FOR THE SUB-LAPLACIAN ON CARNOT GROUPS
下载PDF
导出
摘要 In this article, authors begin with establishing representation formulas and properties for functions on Carnot groups. Then, some unique continuation results to solutions of sub-Laplace equations with potentials are proved. In this article, authors begin with establishing representation formulas and properties for functions on Carnot groups. Then, some unique continuation results to solutions of sub-Laplace equations with potentials are proved.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2010年第5期1776-1784,共9页 数学物理学报(B辑英文版)
基金 supported by the National Natural Science Foundation of China(10871157) Research Fund for the Doctoral Program of Higher Education of China(200806990032) Keji Chuangxin Jijin of Northwestern Polytechnical University(2007KJ01012)
关键词 unique continuation representation formula spherical function Carnotgroup SUB-LAPLACIAN unique continuation representation formula spherical function Carnotgroup sub-Laplacian
  • 相关文献

参考文献3

二级参考文献24

  • 1Bahouri H. Non prolongment unique des solutions d'operateurs. Ann. Inst. Fourier, Grenoble, 1986, 36(4): 137-155.
  • 2Bony J M. Principe du maximum, inequalite de Harnack et unicite du probleme de Cauchy pour les operateur elluptiques degeneres. Ann. Inst. Fourier, Grenoble, 1969, 19(1): 277-304.
  • 3Garofalo N and Lanconelli E. Frequencey functions on the Heisenberg group, the uncertainly principle and unique continuation. Ann. Inst. Fourier, Grenoble, 1990, 40(2): 313-356.
  • 4Pan Y. Unique continuation for Schrodinger operators with singular potential. Comm. in PDE, 1992, 17(5): 953-965.
  • 5Pan Y and Tom Wolff. A Remark on unique continuation. J. Geom. Analysis, 1998, 8(8): 599-604.
  • 6[1]Protter M H. Unique continuation for elliptic equations. Taran. Amer. Math. Soc., 1960, 95(1):81-91.
  • 7[2]Pederson R N. On the unique continuation theorem for certain second and fourth order elliptic operators. Comm. Pure Appl. Math., 1958, 11: 67-80.
  • 8[3]Garofalo N. Unique Continuation for a class of elliptic operators which degenerate on a manifold of arbitrary codimension. J.D.E., 1993, 104: 117-146.
  • 9[4]Garofalo N and Shen Z. Carleman estimates for a subelliptic operator and unique continuation.Ann. Inst. Fourier, Grenoble, 1994, 44(1): 129-166.
  • 10[5]Garofalo N and Lanconelli E. Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation. Ann. Inst. Fourier, Grenoble, 1990, 40(2): 313-356.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部