期刊文献+

声悬浮液滴扇谐振荡的数字图像分析与表面张力测定 被引量:3

原文传递
导出
摘要 通过对悬浮声压进行调制,可以激发声悬浮液滴的非轴对称大幅振荡.由于自由液滴的振荡具有高速变化和不可接触的特点,传统的测量方法难以对其进行定量测定.采用高速摄像记录液滴的振荡过程,通过数字图像分析确定了其振荡模态为扇谐振荡,测定了其振荡频率、旋转速率和衰减系数.结果表明,液滴的振荡频率随赤道半径的增大而减小,可通过修正的Rayleigh方程来描述.在液滴振荡过程中,其旋转速率小于1.5r/s.在关闭对悬浮声压的调制后,液滴的振幅发生指数衰减,其衰减系数与Lamb的计算结果基本一致.以乙醇溶液为例,利用声悬浮液滴的扇谐振荡频率,对液滴表面张力进行非接触式测定,结果证实了这一方法的可行性.
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2010年第10期1240-1246,共7页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金资助项目(批准号:50971105)
  • 相关文献

参考文献22

  • 1Beard K V, Ochs H T, Kubesh R J. Natural oscillations of small raindrops. Nature, 1989, 342: 408-410.
  • 2Villermaux E, Bossa B. Single-drop fragmentation determines size distribution of raindrops. Nat Phys, 2009, 5(9): 697-702.
  • 3Schiffter H, Lee G. Single-droplet evaporation kinetics and particle formation in an acoustic levitator. Part 1: Evaporation of water microdroplets assessed using boundary-layer and acoustic levitation theories. J Pharm Sci, 2007, 96(9): 2274-2283.
  • 4Ishikawa T, Paradis P F, Koike N, et al. Effects of the positioning force of electrostatic levitators on viscosity measurements. Rev Sci Instrum, 2009, 80: 013906.
  • 5Hibiya T, Egry I. Thermophysical property measurements of high temperature melts: Results from the development and utilization of space.Meas Sci Technol, 2005, 16: 317-326.
  • 6Kartavenko V G, Gridnev K A, Greiner W. Nonlinear evolution of the axisymmetric nuclear surface. Phys At Nucl, 2002, 65(4): 637-640.
  • 7Shibata M, Sekiguchi Y. Three-dimensional simulations of stellar core collapse in full general relativity: Nonaxisymmetric dynamical instabilities. Phys Rev D, 2005, 71(2): 024014.
  • 8Mukherjee S, Johnson W L, Rhim W K. Noncontact measurement of high-temperature surface tension and viscosity of bulk metallic glass-forming alloys using the drop oscillation technique. Appl Phys Lett, 2005, 86: 014104.
  • 9Noblin X, Buguin A, Brochard-Wyart F. Triplon modes of puddles. Phys Rev Lett, 2005, 94(16): 166102.
  • 10King L V. On the acoustic radiation pressure on spheres. Proc R Soc London Ser A, 1934, 147(86): 212-240.

同被引文献36

  • 1Thoroddsen S T, Takehara K, Etoh T G. Micro-splashing by drop impacts. J Fluid Mech, 2012, 706:560-570.
  • 2Antonini C, Amirfazli A, Marengo M. Drop impact and wettability: From hydrophilic to superhydrophobic surfaces. Phys Fluids, 2012, 24: 102104.
  • 3Jung S, Hutchings I M. The impact and spreading of a small liquid drop on a non-porous substrate over an extended time scale. Soft Matter, 2012, 8:2686-2696.
  • 4Mock U, Michel T, Tropea C, et al. Drop impact on chemically structured arrays. J Phys Condens Matter, 2005, 17:S595-S605.
  • 5Richard D, Clanet C, Qu6r6 D. Surface phenomena: Contact time of a bouncing drop. Nature, 2002, 417:811.
  • 6Aziz S D, Chandra S. Impact recoil and splashing of molten metal droplets. Int J Heat Mass Transfer, 2000, 43:2841-2857.
  • 7Wirth W, Storp S, Jacobsen W. Mechanisms controlling leaf retention of agricultural spray solutions. Pestic Sci, 1991, 33:411-420.
  • 8Lafuma A, Quere D. Superhydrophobic states. Nat Mater, 2003, 2:457-460.
  • 9Bartolo D, Boudaoud A, Narcy G, et al. Dynamics of non-newtonian droplets. Phys Rev Lett, 2007, 99:174502.
  • 10Bergeron V, Bonn D, Martin J Y, et al. Controlling droplet deposition with polymer additives. Nature, 2000, 405:772-775.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部