期刊文献+

Radius studies of ^8Li and ^8B using the optical-limit Glauber model in conjunction with relativistic mean-field theory

Radius studies of ^8Li and ^8B using the optical-limit Glauber model in conjunction with relativistic mean-field theory
原文传递
导出
摘要 We study the reaction cross sections (σR) and root-mean-square (RMS) radii of ^8Li and ^8B, the halo-like nuclei, with stable target ^12C, ^27Al and ^9Be within the standard optical-limit Glauber model, using densities obtained from relativistic mean-field (RMF) formalisms and other types of distributions. It is found that the experimental σR can be reproduced well at high energy. The RMS radius and Ar extracted by RMF- theory and harmonic oscillator distribution are compared. larger than those of SLi. In addition, we analyze in detail the We find that the RMS radius and Ar of SB are relationship between σR and density distribution. We study the reaction cross sections (σR) and root-mean-square (RMS) radii of ^8Li and ^8B, the halo-like nuclei, with stable target ^12C, ^27Al and ^9Be within the standard optical-limit Glauber model, using densities obtained from relativistic mean-field (RMF) formalisms and other types of distributions. It is found that the experimental σR can be reproduced well at high energy. The RMS radius and Ar extracted by RMF- theory and harmonic oscillator distribution are compared. larger than those of SLi. In addition, we analyze in detail the We find that the RMS radius and Ar of SB are relationship between σR and density distribution.
出处 《Chinese Physics C》 SCIE CAS CSCD 2010年第10期1622-1627,共6页 中国物理C(英文版)
基金 Supported by One Hundred Person Project of Chinese Academy of Sciences (26010701) Knowledge Innovation Project of Chinese Academy of Sciences (KJCX2-SW-N13,KJCX3-SYW-N2) National Natural Science Foundation of China (10675156)
关键词 Glauber model root-mean-square radius relativistic-mean-field theory reaction cross sections Glauber model, root-mean-square radius, relativistic-mean-field theory, reaction cross sections
  • 相关文献

参考文献34

  • 1Kohama A,Iida K,Oyamatsu K et al.Phys.Rev.C,2008,78:061601.
  • 2Tanihata I,Hamagaki H,Hashimoto O et al.Phys.Rev.L,1985,55:2676.
  • 3Minamisono T,Ohtsubo T,Minami Iet al.Phys.Rev.L,1992,69:2058.
  • 4Warner R E,Kelley J H,Becchetti F D et al.Phys.Rev.C,1995,52:1166(R).
  • 5Ogawa Y,Tanihata I.Nucl.Phys.A,1997,616:239.
  • 6Warner R E,Becchetti F D,Brown J A et al.Phys.Rev.C,2004,69:024612.
  • 7Kitagawa H,Sagawa H.Phys.Lett.B,1993,299:1.
  • 8Tanihata I,Kobayashi T,Yamakawa O et al.Phys.Lett.B,1988,206:592.
  • 9Takechi M,Fukuda M,Mihara M et al.Phys.Rev.C,2009,79:061601(R).
  • 10Glauber R J.Lectures in Theoretical Physics.Edited by Brittin W E,Dunham L G Interscience,New York,1959 315.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部