摘要
对于图G和图H,Ramsey数r(G,H)定义为最小正整数p,使得经任意红兰2边着色的完全图Kp,或者其红色子图包含G,或者其兰色子图包含H。以mC4表示m个互不相交的C4。得到以下结论:当n≥m≥1,(m,n)≠(1,1)时,r(mC4,nC4)=2m+4n-1。
If G and H are graphs,define the Ramsey number r(G,H) to be the least number p . If the edges of the complete graph K p are colored red and blue,either the red graph contains G as a subgraph or the blue graph contains H .Let mC 4 denote the union of m disjoint copies of C 4 .In this paper,we prove that r(mC 4,nC 4)=2m+4n-1 ,where n≥m≥1,(m,n)≠(1,1).
关键词
图
圈
RAMSEY数
graphs (mathematics),cycle,Ramsey number