期刊文献+

铝锭坯梯度水冷过程中温度场的数值模拟 被引量:2

Numerical simulation of temperature field on aluminium billet gradient cooling process
下载PDF
导出
摘要 根据铝锭坯梯度水冷设备的布置特点,分析铝锭坯梯度水冷时的传热特点,采用有限差分法建立铝锭坯梯度水冷过程中温度场的数学模型。根据模型在VB编程平台编制计算程序,计算铝锭坯在梯度水冷过程中任意时刻的温度场分布。并通过在线使用验证了该模型的可靠性,且该模型具有计算精度较高、计算速度较快等特点,可用作在线控制模型。 According to the layout of gradient cooling equipment of aluminium ingot and analyzing its heat transfer characteristics,using FDM to establish the mathematical model of temperature field for aluminium ingot during gradient cooling process.According to the model,the computing program was created in VB program environment to compute the temperature field of aluminium ingot during gradient cooling process at any moment.Through online using to validate the reliability of the model,and this model has a high accuracy,calculation speed and other characteristics,can be used as on-line control model.
出处 《轻合金加工技术》 CAS 北大核心 2010年第9期29-31,44,共4页 Light Alloy Fabrication Technology
基金 粤港招标项目(20080103-2) 广东省重大科技专项(2008A090300004)
关键词 有限差分法 梯度水冷 温度场 FDM gradient cooling temperature field
  • 相关文献

参考文献4

  • 1张君,杨合,何养民,韩炳涛,詹梅.铝及铝合金型材等温挤压关键技术研究进展[J].重型机械,2003(6):1-5. 被引量:6
  • 2PANDIT M, Kaiserslautern. Trends and perspectives concerning temperature measurement and control in aluminium extrusion [ J ]. Aluminium ,2000,76 (7/8) :564 - 573.
  • 3BRYANT A J, DIXON W, FIELDING R. Isothermal extrusion [ J ]. Light Metal Age, 1999,57 (3) :8 - 36.
  • 4俞昌铭.热传导及其数值分析[M].北京:清华大学出版社,1982.

二级参考文献1

  • 1吴诗.挤压理论[M].北京:国防工业出版社,1994..

共引文献27

同被引文献43

  • 1李秀改,高东杰.混杂系统滚动时域状态反馈预测控制研究与实现[J].自动化学报,2004,30(4):567-571. 被引量:6
  • 2邹涛,王昕,李少远.基于混合逻辑的非线性系统多模型预测控制[J].自动化学报,2007,33(2):188-192. 被引量:18
  • 3彭大暑 谢建新.穿孔针芯头几何形状和运动状态对管材挤压力的影响.中南矿冶学院学报,1987,(18):45-52.
  • 4Castrigiano Domenico P L, Hayes Sandra A. Catastrophe Theory [M]. 2rid ed. Michigan, USA: Addison-Wesley Pub. Co., Boulder, Westview, 2004.
  • 5LI Luo-xing, LOU Yan. Ram speed profile design for isothermal extrusion of AZ31 magnesium alloy by using FEM simulation [J]. Transactions of Nonferrous Metals Society of China (S1003-6326), 2008, (18): 252-256.
  • 6Myhr O R, Grong O, Fjaer H G, et al. Modelling of the microstructure and strength evolution in AI-Mg-Si alloys during multistage thermal processing [J]. Acta Materialia (S1359-6454), 2004, 52(1): 4997-5008.
  • 7Leila Zouaghi, Achim Wagner, Essam Badreddin. Hybrid, recursive, nested monitoring of control systems using Petri nets and particle filters [C]//2010 International Conference on Dependable Systems and Networks Workshops (DSN-W). Chicago, Illinois, USA: IEEE, 2010: 73-79.
  • 8Hui Zhang, Luoxing Li, Deng Yuan. Hot deformation behavior of the new A1-Mg-Si-Cu aluminium alloy during compression at elevated temperature [J]. Materials Characterization (S1044-5803), 2007, 58(2): 321-326.
  • 9Nengping Jin H Z, Yi Hart, Wenxiang Wu, Jianghua Chen. Hot deformation behavior of 7150 aluminium alloy during compression at elevated temperature [J]. Materials Characterization (S1044-5803), 2008, 60(1): 530-536.
  • 10Kwon Y N, Y S L, J H Lee. Deformation behavior of AI-Mg-Si alloy at the elevated temperature [J]. Journal of Materials Processing Technology (S0924-0136), 2007, (187-188): 533-536.

引证文献2

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部