期刊文献+

球形团聚物模型在质子交换膜燃料电池过程模拟中的应用 被引量:1

Application of spherical agglomerate model in PEMFC process simulation
下载PDF
导出
摘要 在建立直通道质子交换膜燃料电池(PEMFC)的二维全电池数学模型中,将球形团聚物模型应用至两极的催化剂层。通过调节团聚物中质子传导介质的比例和催化层孔隙率,预测了基准供气状态下单电池的极化曲线,与文献报道的实验数据吻合良好。研究了电池运行过程中,膜电极内各化学组分和电流密度的分布情况及流向,比较了不同供气压力、催化剂铂颗粒尺寸等参数对电池性能的影响。计算结果表明,在阴极及时排出反应产生的水,并在阳极对燃料气进行加湿是保证单电池正常运行的前提,提高阴极的氧化剂气体压力,可显著改善PEMFC单电池性能,特别是在受浓差极化影响较大的大电流密度区;在催化剂铂载量相同的情况下,减小铂颗粒的尺寸可以提高电池的性能。 A two-dimensional full cell mathematic model for PEMFC with conventional parallel flow field was developed.In this model,the transport of the two charged species,electrons and ions,as well as that of the chemical species in MEA was considered.The model treated the catalyst layers as spherical agglomerates of polymer electrolyte coated catalyst particles.Different parameters for polymer electrolyte content in agglomerate and catalyst layer porosity were employed under different cell voltage.The polarization curves predicted at base case by the model agreed well with the published experimental data.Profile of chemical species and current density within MEA in running state was investigated respectively.The influences of pressure and sizes of Pt particles in catalyst on the fuel cell performance were also investigated.The simulation results showed the mass transport and reaction phenomena in MEA,suggested that water draining at cathode and gas humidification at anode is important to maintain the performance of single cell.The results indicated that high pressure of cathode inlet gas was good for PEMFC single cell performance,especially running under low cell voltage.It also indicated that within the same Pt loading,the fuel cell performance is better at smaller Pt particle size.
出处 《化工学报》 EI CAS CSCD 北大核心 2010年第10期2694-2702,共9页 CIESC Journal
基金 国家高技术研究发展计划项目(2007AA05Z145) 上海市优秀学科带头人计划项目(09XD1402400)~~
关键词 质子交换膜燃料电池 数学模型 球形团聚物 PEMFC mathematic model spherical agglomerate
  • 相关文献

参考文献14

  • 1陈黎明,吴曦,马紫峰.质子交换膜燃料电池过程模拟研究进展[J].化工学报,2009,60(3):537-544. 被引量:3
  • 2Berning T, Djilali N. Three dimensional computational analysis of transport phenomena in a PEM fuel cell. J. Power Sources, 2002, 106 (1/2) : 284-294.
  • 3Springer T E, Wilson M S, Gottesfeld S. Modeling and experimental diagnostics in polymer electrolyte fuel cells. J. Electrochem. Soc. , 1993, 140 (12) : 3513-3526.
  • 4Marr C, Li X. Composition and performance modelling of catalyst layer in a proton exchange membrane fuel cell. J. Power Sources, 1999, 77 (1) : 17-27.
  • 5Iezkowski R P, Cutlip M B. Voltage losses in fuel cell cathodes. J. Electrochem. Soc., 1980, 127 (7) : 1433-1440.
  • 6Ridge S J, White R E, Tsou Y, Beaver R N, Eisman G A. Oxygen reduction in a proton exchange membrane test cell. J. Electrochem. Soc. , 1989, 136 (7) : 1902- 1909.
  • 7Gloaguen F, Durand R. Simulations of PEFC cathodes: an effectiveness factor approach. J. Appl. Electrochem. , 1997, 27 (9): 1029-1035.
  • 8Gloaguen F, Convert P, Gamburzev S, Velev O A, Srinivasan S. An evaluation of the macro-homogeneous and agglomerate model for oxygen reduction in PEMFCs. Electrochimica Acta, 1998, 43 (24) : 3767-3772.
  • 9Broka K, Ekdunge P. Oxygen and hydrogen permeation properties and water uptake of Nafion 117 membrane and recast film for PEM fuel cell. J. Appl. Electrochem. , 1997, 27 (2): 117-123.
  • 10Jaouen F, Lindbergh G, Sundholmb G. Investigation of mass-transport limitations in the solid polymer fuel cell cathode ( I ) : Mathematical model. J. Electrochem. Soc. , 2002, 149 (4): A437-A447.

二级参考文献28

  • 1Weber Adam Z, Newman John. Modeling transport in polymer electrolyte fuel cells. Chem. Rev. , 2004, 104: 4679-4726
  • 2Das Prodip K, Li Xianguo, Liu Zhongsheng. A three- dimensional agglomerate model for the cathode catalyst layer of PEM fuel cells. Journal of Power Sources, 2008, 179(1): 186-199
  • 3Hu Guilin, Fan Jianren. A three dimensional, multicomponent, two-phase model for a proton exchange membrane fuel cell with straight channels. Energy & Fuels, 2006, 20 (2): 738-747
  • 4Ruy Sousa Jr, Ernesto R Gonzalez. Mathematical modeling of polymer electrolyte fuel cells. Journal of Power Sources, 2005, 147 (1/2): 32-45
  • 5Yao K Z, Karan K, McAuley K B, Oosthuizen P, Peppley B, Xie T. A review of mathematical models for hydrogen and direct methanol polymer electrolyte membrane fuel cells. Fuel Cells, 2004, 4 (1/2): 3-29
  • 6Kim Junbom, Modeling of performance J. Electrochem Lee Seong Min, Srinivasan Supramaniam. proton exchange membrane fuel cell with an empirical equation. Sot., 1995, 142 (8): 2670-2674
  • 7Amphlett J C, Baumert R M, Mann R F, Peppley B A, Roberge P R. Performance modeling of the ballard mark Ⅳ solid polymer electrolyte fuel cell. J. Electrochern. Sot., 1995, 142 (1): 9-15
  • 8Lee J H, Lalk T R, Appleby A J. Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks. Journal of Power Sources,1998, 70 (2): 258-268
  • 9Pisani L, Murgia G, Valentini M, D'Aguanno B. A new semi empirical approach to performance curves of polymer electrolyte fuel cells. Journal of Power Sources, 2002, 108 (1/2): 192 203
  • 10J del Real Alejandro, Arce Alicia, Bordons Carlos. Development and experimental validation of a PEM fuel cell dynamic model. Journal of Power Sources, 2007, 173 (1):310-324

共引文献2

同被引文献2

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部