摘要
为了克服传统恒模算法(CMA)采用固定步长造成的收敛速度与收敛精度之间的矛盾,提出了一种基于平衡正交多小波变换的模糊神经网络盲均衡算法(MWT-FNN-BEA).该算法一方面利用模糊神经网络控制器自动调节算法的迭代步长,较好地解决了收敛速度与收敛精度之间的矛盾;另一方面利用平衡正交多小波变换对均衡器输入信号进行去相关性处理,进一步提高了算法的性能。理论分析和水声信道仿真结果表明,所提出的算法具有较快的收敛速度和较小的稳态误差,抗干扰性能好。
In order to overcome the contradiction between the convergence rate and accuracy for using fixed step in traditional constant modulus algorithm(CMA),a fuzzy neural network blind equalization algorithm based on balance orthogonal multi-wavelet transform(MWT-FNN-BEA)was proposed.In this algorithm,the contradiction between the convergence rate and accuracy was solved by using fuzzy neural network controller to adjust the step of algorithm automatically.Furthermore,by utilizing the balance orthogonal multi-wavelet transform to the input signals of equalizer,the performance of algorithm was further improved.Theoretical analysis and simulation results demonstrate that the proposed algorithm has higher convergence rate,small steady error and good noise immunity.
出处
《兵工学报》
EI
CAS
CSCD
北大核心
2010年第9期1137-1144,共8页
Acta Armamentarii
基金
全国优秀博士学位论文作者专项资金资助项目(200753)
江苏省高等学校自然科学基金资助项目(08KJB510010)
江苏省"六大人才高峰"培养对象资助项目(2008026)
江苏省自然科学基金资助项目(BK2009410)
安徽省高等学校自然科学基金资助项目(KJ2010A096)
关键词
信息处理技术
盲均衡
模糊神经网络
平衡正交多小波
水声信道
information processing technique
blind equalization
fuzzy neural network
balance orthogonal multi-wavelet
underwater acoustic channel