期刊文献+

基于三次模型的线搜索方法及其收敛性

A Line Search Method with Cubic Model and It's Convergence Property
下载PDF
导出
摘要 针对无约束优化问题,给出一种基于三次模型的线搜索型算法,并在适当的条件下证明算法的全局收敛性.该算法以对称矩阵代替原三次模型中的Hessian阵,并且不需要保持正定和Dennis-Moré条件,它与一般线搜索法不同,在每次迭代中步长可以在下降方向上由显性公式直接确定,从而可以减少搜索计算. A line search method with conic model for unconstrained optimization was proposed,and its global convergence result was proved under some suitable conditions.In the cubic model of the algorithm,the Hessian matrix of the objective function is replaced by a symmetric matrix without the positive definite assumption and the Dennis-Moré condition.At each iteration,the step-size is computed by an explicit formula on the descent direction which is different from general line search methods so that the search computation can be simplified.
出处 《广西科学》 CAS 2010年第3期209-211,共3页 Guangxi Sciences
基金 国家自然科学基金项目(10761001) 广西自然科学基金项目(0991028) 广西大学科研基金项目(X081082)资助
关键词 三次模型 线搜索 无约束优化 全局收敛 cubic model line search method unconstrained optimization global convergence
  • 相关文献

参考文献6

  • 1Wei Z X,Li G,Qi L.Global convergence of the Polak-Ribière-Polyak conjugate gradient method with an Armijo-type inexact line search for nonconvex unconstrained optimization problems[J].Mathematics of computation,2008,77:2173-3193.
  • 2Yuan G L,Lu X W.A new line search method with trust region for unconstrained optimization[J].Communi-cations on Applied Nonlinear Analysis,2008,15:35-49.
  • 3Nesterov Y,Polyak B T.Cubic regularization of Newton method and its global performance[J].Math Program,2006,108:177-205.
  • 4Cartis C,Gould N I M,Toint P L.Adaptive cubic regularization methods for unconstrained optimization[J].Math Program,2010,doi:10.1007/s10107-009-0337-y(online).
  • 5Nestero Y.Accelerating the cubic regularization of Newton's methods on convex problems[J].Math Program,2008,112:159-181.
  • 6WeiZeng-xin LiLve LuSha.Nonmonotone adaptive cubic overestimation methods for unconstrained optimization.广西大学学报:自然科学版,2009,34:115-119.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部