期刊文献+

基于正交匹配追踪的压缩感知信号检测算法 被引量:49

Compressive sensing signal detection algorithm based on orthogonal matching pursuit
下载PDF
导出
摘要 在不重构信号的情况下,利用检测算法直接处理压缩感知信号获得的采样值可以完成信号检测任务。目前的检测算法中,作为判决依据的特征量仅由一次迭代过程决定。在感兴趣信号存在时,算法获得的特征量波动较大,影响检测性能。基于这种原因,本文提出一种改进算法,在每次迭代中基于正交匹配追踪思想修正特征量,降低特征量的波动,提高检测性能。实验结果表明,与原算法相比,本文算法获得的特征量波动小,相同检测阈值下,检测成功率高,相同检测成功率要求下,需要的采样点数少,允许的信噪比低。 Without reconstructing the signal itself,signal detection could be solved by a detection algorithm,which directly processes the sampling values obtained from compressive sensing signal.In current detection algorithm,as the judgment criterion,the characteristic quantity is determined in one iterative process.When the signal of interest exists,the characteristic quantity obtained from the detection algorithm fluctuates,which decreases the detection performance.Therefore,in this paper,we propose an improved algorithm,which amends the characteristic quantity based on orthogonal matching pursuit in each iteration,reduces the fluctuation of the characteristic quantity and improves the detection performance.Experiment results show that compared with original algorithm the proposed method greatly reduces the fluctuation of the characteristic quantity,has higher success rate of detection under the same detection threshold,requires fewer samples under the same success rate of detection and allows lower SNR under the same success rate of detection.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第9期1959-1964,共6页 Chinese Journal of Scientific Instrument
基金 第四十五批博士后科学基金20090450571
关键词 压缩感知 信号检测 特征量 正交匹配追踪 compressive sensing signal detection characteristic quantity orthogonal matching pursuit(OMP)
  • 相关文献

参考文献15

  • 1DONOHO D L. Compressed sensing[J].IEEE Transaction on Information Theory, 2006, 52(4): 1289-1306.
  • 2CANDES E, ROMBERG J, TERENCE T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transaction on Information Theory, 2006, 52(2): 489-509.
  • 3BARANIUK R. A lecture Compressive sensing[J].IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
  • 4CANDES E, TERENCE T. Near optimal signal recovery from random projections: Universal encoding strategies[J].IEEE Transaction on Information Theory, 2006, 52(12): 5406-5425.
  • 5CANDES E, ROMBERG J, TERENCE T. Stable signal recovery from incomplete and inaccurate measurements[J].Comm. Pure. Appl. Math, 2006, 59(8): 1207-1223.
  • 6HAPPUT J, NOWAK R. Signal reconstruction from noisy random projections[J].IEEE Transaction on Information Theory, 2006, 52(9): 4306-4048.
  • 7李林,孔令富,练秋生.基于轮廓波维纳滤波的图像压缩传感重构[J].仪器仪表学报,2009,30(10):2051-2056. 被引量:17
  • 8NEEDELL D, TROPP J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J].Appl. Com PHarmonic Aal, 2009, 76(3): 301-321.
  • 9练秋生,高彦彦,陈书贞.基于两步迭代收缩法和复数小波的压缩传感图像重构[J].仪器仪表学报,2009,30(7):1426-1431. 被引量:20
  • 10DAVENPORT M, WAKIN M, BARANIUK R. Detection and Estimation with Compressive Measurements[R].Houston TX USA: Rice ECE Department , 2006: 3-13.

二级参考文献14

  • 1练秋生,孔令富.非抽样轮廓波变换构造及其在图像去噪中的应用[J].仪器仪表学报,2006,27(4):331-335. 被引量:11
  • 2DONOHO D L. Compressed sensing[ J]. IEEE Transactions on Information Theory, 2006,52(4) :1289-1306.
  • 3CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Transactions on Information Theory, 2006,52(2) :489-509.
  • 4DUARTE M F, DAVENPORT M A, TAKHAR D, et al. Single-pixel imaging via compressive sampling [ J ]. IEEE Signal Processing Magazine, 2008,25 ( 2 ) : 83-91.
  • 5CHEN S, DONOHO D L, SAUNDERS M A. Atomic decomposition by basis pursuit [ J ]. SIAM Journal on Scientific Computing, 1999,20( 1 ) :33-61.
  • 6CANDES E J, ROMBERG J. Practical signal recovery from random projections [ C ]. Proceeding of the SPIE, Computational Imaging Ⅲ, San Jose, California, 2005, 5674:76-86.
  • 7TROP PJ A. Greed is good: Algorithmic results for sparse approximation [ J ]. IEEE Transactions on Information Theory, 2004,50 (10) :2231-2242.
  • 8DONOHO D L, TSAIG Y, DRORI I, et al. Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit: Report of Department of statistics, Standford University[R]. California: Standford uni- versity, 2006,04.
  • 9DAUBECHIES I, DEFRISE M, MOL C D. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[ J]. Communications on Pure and Applied Mathematics, 2004,57 ( 11 ) : 1413-1457.
  • 10BIOUCAS-DIAS J M, FIGUEIREDO M A T. A new TWIST: Two-step iterative shrinkage/thresholding algorithms for image restoration [ J ]. IEEE Transactions on Image processing, 2007,16 (12) :2992-3004.

共引文献28

同被引文献442

引证文献49

二级引证文献266

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部