期刊文献+

一类脉冲偏泛函微分方程在无界区域上的吸引性和不变集(英文) 被引量:3

Attraction and Invariant Set for Impulsive Partial Functional Differential Equations in Unbounded Domains
下载PDF
导出
摘要 一类脉冲偏泛函微分方程在无界区域上的吸引性被研究.首先利用基本解理论,建立了这类方程柔解的积分表达式.然后,使用非负矩阵性质和不等式分析技巧,给出判断吸引集和不变集的一些充分条件. The attraction for a nonlinear impulsive partial functional differential equation in a unbounded domain is investigated.By applying the method of fundamental solution,a variation of constants formula is established for the mild solution of the equation.By using the properties of nonnegative matrices and inequality techniques,some sufficient criteria for attracting set and invariant set are obtained.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第5期688-693,共6页 Journal of Sichuan Normal University(Natural Science)
基金 supported by Department of Science and Technology(2009JY0066) Scientific Research Fund of Sichuan Provincial Education Department(08ZA044)~~
关键词 吸引性 不变集 柔解 脉冲 偏泛函微分方程 attraction invariant set mild solution impulsive partial functional differential equations
  • 相关文献

参考文献20

  • 1Arrieta J M,Cholewa J W,Dlotko T,et al.Asymptotic behavior and attractors for reaction diffusion equations in unbounded do-mains[J].Nonlinear Anal:TMA,2004,56:515-554.
  • 2Bemal A R,Wang B X.Attractors for partly dissipative reaction diffusion systems in R°[J].J Math Anal Appl,2000,252:790-803.
  • 3Efendiev M,Miranville A,Zelik S.Global and exponential attractors for nonlinear reaction-diffusion systems in unbounded do-mains[J].Proc Roy Soc Edinburgh:Sect A,2004,134:271-315.
  • 4Temam R.Infinite-dimensional Dynamical Systems in Mechanics and Physics[M].2nd ed.New York:Springer-Verlag,1997.
  • 5Wang B X.Attractors for reaction-diffusion equations in unbounded domains[J].Physica,1999,D128:41-52.
  • 6Lakshmikantham V,Bainov D D,Simeonov P S.Theory of Impulsive Differential Equations[M].Singapore:World Scientific,1989.
  • 7Wu J.Theory and Application of Partial Functional Differential Equations[M].New York:Springer-Verlag,1996.
  • 8Bainov D D,Minchev E,Nakagawa K.Asymptotic behavior of solution of impulsive semilinear parabolic equations[J].Nonlinear Anal:TMA,1997,30:2725-2734.
  • 9Bainov D D,Kirane M,Minchev E.Stability properties of solutions of impulsive parabolic differential-functional equations[J].Applicable Analysis,2001,79:63-72.
  • 10Fu X,Liu X,Sivaloganathan S.Oscillation criteria for impulsive parabolic differential equations with delay[J].J Math Anal Appl,2002,268:647-664.

同被引文献31

  • 1田立新,徐振源,刘曾荣.耗散孤立波方程的吸引子[J].应用数学和力学,1994,15(6):539-547. 被引量:8
  • 2李永昆.具有偏差变元的双曲型微分方程组解的振动性[J].数学学报(中文版),1997,40(1):100-105. 被引量:66
  • 3谷超豪.孤立子及应用[M].杭州:浙江出版社,1990.
  • 4Temam R. Infinite - Dimensional Systems in Mechanics and Physics[ M]. New York : Springer - Verlag,1988.
  • 5Bouard A, Debussche A. On the stochastic korteweg - de vries equation[ J]. J Funct Anal,1998,154:215 -251.
  • 6Bouard A, Debussche A. A stochastic nonlinear schrodinger equation with multiplicative noise[ J]. Commun Math Phys,1999,205:161 -181.
  • 7Bouard A, Debussche A. The stochastic nonlinear schrodinger equation in [ J]. Stochastic Anal Appl,2003 ,21:97 - 126.
  • 8Da Prato G, Debussche A,Temam R. Stochastic Burgers’ equation[ J]. Nonl Diff Eqns Appl,1994,1:389-402.
  • 9Crauel H,Debussche A, Franco F. Random attractors[ J]. J Dyn Diff Eqns, 1992,9:307 -341.
  • 10Crauel H, Flandoli F. Attractors for random dynamical systems[ J]. Prob Theo Related Fields, 1994,100:365 -393.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部