期刊文献+

图是超限制性边连通的充分条件(英文) 被引量:1

Sufficient Conditions for Graphs to be Super Restricted Edge Connected
下载PDF
导出
摘要 设G=(V,E)是连通图.边集S E是一个限制性边割,如果G-S是不连通的且G—S的每个分支至少有两个点.G的限制性连通度λ'(G)是G的一个最小限制性边割的基数.G是λ'-连通的,如果G存在限制性边割.G是λ'-最优的,如果λ'(G)=ζ(G),其中ζ(G)是min{d(x)+d(y)-2:xy是G的一条边}.进一步,如果每个最小的限制性边割都孤立一条边,则称G是超限制性边连通的或是超-λ'.G的逆度R(G)=∑_(v∈V) 1/d(v),其中d(v)是点v的度数.我们证明了G是λ'-连通的且不含三角形,如果R(G)≤2+1/ζ-ζ/((2δ-2)(2δ-3))+(n-2δ-ζ+2)/((n-2δ+1)(n-2δ+2)),则G是超-λ'. Let G =(V,E) be a connected graph.An edge set S E is a restricted edge cut,if G - S is disconnected and every component of G - S has at least two vertices.The restrictededge connectivityλ'(G) of G is the cardinality of a minimum restricted edge cut of G.A graphG isλ'-connected,if restricted edge cuts exist.A graph G is calledλ'-optimal,ifλ'(G) =ξ(G),whereξ(G) =min{ξ(e) = d(u) +d(v) -2:e = uv∈E}.Furthermore,if every minimumrestricted edge cut is a set of edges incident to a certain edge,then G is said to be super restrictededge connected or super-λ' for simplicity.Inverse degree of G is R(G)=Σ_(v∈V)1/(d(v)),where d(v)denotes the degree of the vertex v.We show that let G be aλ'-connected triangle-free graph.IfR(G)≤2+(1/δ)-(ξ/((2δ-2)(2δ-3)))+((n-2δ-ξ+2)/(n-2δ+1)(n-2δ+2)),then G is super-λ'.
出处 《数学研究》 CSCD 2010年第3期242-248,共7页 Journal of Mathematical Study
基金 supported by NSFC(No.10831001) Natural Science Foundation of Fujian Province(2010J05005)
关键词 互联网络 超-λ' 逆度 interconnection networks super-λ' inverse degree
  • 相关文献

参考文献1

二级参考文献3

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部