期刊文献+

基于Leslie-Gower捕食-被食模型的渔业收获问题(英文) 被引量:1

Harvesting of a Prey-predator Fishery Based on Leslie-Gaower Model
下载PDF
导出
摘要 考虑了基于Leslie-Gower模型的生物经济学捕获问题,通过对税收政策的控制影响渔业生态系统,研究了系统的动力学行为,并通过Pontryagins最大值原理考虑了最优的税收政策,最后给出了系统仿真. We discuss the bio-economic harvesting of a prey-predator fishery based on Leslie-Gaower model.The dynamic behavior of the system is examined.The optimal harvesting policy is studied by using Pontryagin's maximal principle.Finally,an example together with numerical simulation shows the feasibility of the main results.
作者 陈晓锋
出处 《数学研究》 CSCD 2010年第3期256-263,共8页 Journal of Mathematical Study
基金 Supported by the Foundation to the Educational Committee of Fujian(JB08020)
关键词 Leslie-Gower模型 局部稳定性 渔业税收 Leislie-Gower model local stable fishery tax police.
  • 相关文献

参考文献10

  • 1Pradhan T,Ghaudhuri K S.A dynamic reaction model of a two-species fishery with taxation as a control instrument' a capital theoretic analysis Ecological Modelling,1999,121:1-16.
  • 2Kar T K.Management of a fishery based on continuous fishing effort.Nonlinear Analysis:Real World Applications,2004,5:629-644.
  • 3Kellogg R L,Easley J E,Johnson T.Optimal timing of harvest for the North Carolina Bay Scallop Fishery.Am.J.Agri.Econ.,1988,70:50-62.
  • 4Leslie P H.A stochastic model for studying the properties of certain biological systems by numerical methods.Biometrika,1958,45:16-31.
  • 5Leslie P H.Some further notes on the use of matrices in population mathematics.Biometrika,1948,35:213-245.
  • 6Amine Z,Ortega R.A periodic prey-predator system.J.Math.Anal.Appl.,1994,185:477-489.
  • 7Tang S Y,Chen L S.The periodic predator-prey Lotka-Volterra model with impulsive effect.J.Mech.Meal.Biol.,2002,2:1-30.
  • 8Nindjin A F,Aziz-Alaoui M A.Cadivel M.Analysis of a predator-prey model with modified Leslie-Gower and Honing-type II schemes with time delay.Nonlinear Analysis:Real World Applications,2006,7:1104-1118.
  • 9Pontryagin L S,Boltyanskii V G,Gamkreliclre R V,et al.The Mathematical Theory of Optimal Processes.Pergamon Press,London,1964.
  • 10Murray J D,Mathematical Biology.Springer,Berlin:1993.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部