摘要
无单元法的突出特点是可以求解复杂边界条件的边值问题,它可以根据场分布的特性布置随机节点,只需节点信息,无需单元信息,解决了有限元方法中前处理困难的问题,它的理论基础是滑动最小二乘法.其基本思想是将计算场域离散成若干个点,由滑动最小二乘法来拟令场函数,从而摆脱了单元的限制.同时,它保留了有限元的一些特点,克服了有限元的某些不足,具有精度高、计算速度快的特点.
Based on moving least-squares (MLS) interpolates, an element-free method (EFM) whichis applicable to arbitrary shapes but requires only nodal data Even more Exciting are its potential in adaptivemethods, where in an interactive mode a user could simply drop large number of points into the portion of acomponent where he would like more accuracy and the method would precede to enhance the solution withoutconstructing a new finite element mesh Therefore;the method simplifies pre-processing and can solve problemswith higher accumcy Contrast to Finite Element Method (FEM), the Element-Free Method is advanced whichbrings the advantages of FEM into EFM simultaneously .
出处
《河北工业大学学报》
CAS
1999年第2期10-15,共6页
Journal of Hebei University of Technology
基金
河北省自然科学基金
关键词
二维电场
滑动最小二乘法
电场
数值解
无单元法
Element-free method, Electrical field , Moving least squares method , Shape function