期刊文献+

证券投资风险最优控制问题 被引量:2

Risk Optimal Control for Security Investment
下载PDF
导出
摘要 在假设证券价格服从几何布朗运动的基础上·首先,建立了证券投资决策最优控制问题数学模型,并把经济学家提出的风险规避系数概念引入到证券投资决策问题中·然后,根据随机最优控制理论,推导出了风险规避投资者的值函数所满足的带有风险规避系数的动态规划偏微分方程,并且得到了基于随机最优控制问题值函数的证券投资最优策略·特别,当风险规避系数无限大时,得到了风险规避投资者的最优投资策略,最后,给出一个算例· An optimal control model for the security investment decision was established based on the assumption that the security price follows the geometric Brownian Motion. The conception of risk aversion coefficient proposed by economists was introduced into the model for security investment decision. Dynamic programming partial differential equation with the coefficient of risk aversion was obtained on the basis of the stochastic control theory. The equation can meet the value of the risk aversion investor. The security investment optimal tactics was set up based on the value function of the stochastic optimal control. Particularly,the security investment optimal tactics for the investor of risk aversion was also found out for the infinite coefficient of risk aversion. An example was provided.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 1999年第3期330-332,共3页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金
关键词 证券投资 风险规避 最优控制 动态规划 security investment, risk aversion, stochastic control, dynamic programming.
  • 相关文献

参考文献3

  • 1Friedman A 吴让泉等(译).随机微分方程及其应用[M].北京:科学出版社,1983.170-176.
  • 2龚光鲁,随机微分方程引论,1987年,38页
  • 3吴让泉(译),随机微分方程及其应用,1983年,170页

共引文献3

同被引文献13

  • 1赵宏邹,雯汪浩.证券市场预测的神经网络方法[J].系统工程理论与实践,1997,17(6):127-131. 被引量:29
  • 2Hoang S,Baraille R,Talagrand O.On the design of a stable adaptive filter for state estimation in high dimensional systems[J]. Automatica,2001,37(3):325-340.
  • 3Matias W, Henrik S. Estimating the degree of time variance in a parametric model[J]. Automatica,2000,36:619-625.
  • 4Robert D N, Richard G. Wavelet-based transformation for nonlinear signal processing[J]. IEEE Transactions On Signal Processing,1999,47(7):1852-1865.
  • 5Gouttebroze S,Lardies J.On using the wavelet transform in modal analysis[J]. Mechanics Research Communications,2001,28(5):561-569.
  • 6崔景泰(美).小波分析导论[M]程正兴译西安:西安交通大学出版社,1995.2-28(Cui J T. The introduction of wavelet analysis[M]. Cheng Z X. XiAn:Xian Transportation University Press,1995.2-28.)
  • 7Laura R, Juan F. The continuous wavelet transform as a maximum entropy solution of the corresponding inverse problem[J]. IEEE Transaction On Signal Processing,1999,47(7):2046-2050.
  • 8Jamshed N P,Ashfag A K,Leah H J. Scalability of 2-D wavelet transforms algorithms analytical and experimental results on MPPS[J]. IEEE Transactions On Signal Processing,2000,48(12):3401-3405.
  • 9Abur A,Magnago F H. Use of time delays between modal components in wavelet based fault location[J]. International Journal of Electrical Power and Energy System,2000,22(6):397-403.
  • 10Zhang, WG; Xiao, WL; Wang, YL .A fuzzy portfolio selec- tion method based on positivistic mean and variance [J]. Soft computing, 2009, 13(6): 627-633.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部