摘要
利用Browder建立的单调型映射拓扑度理论和极大单调映射的特性,研究了一类非线性发展方程初值问题(E)du(t)dt+A(t)u(t)+G(t)u(t)∈f(t)u(0)=u0{0≤t≤T解的存在性,这里A(t)是多值极大单调映射,G(t)是单值非单调映射·在Hilbert空间中,该结论是Hirano,Ahmed等相应定理的发展和推广·
A class initial value problem of nonlinear evolution equation in Hilbert space was studied,where the nonlinear mapping is A+G . The existence of solution is proved by using Browders topological degree theory of monotone type mapping and property of maximal monotone mapping. A is the single monotone hemicontinuous operator and G is single nonmonotone operator in work of Hirano, Ahmed and the others is generalized to A is the multivalued maximal monotone mapping and G is the weaker single nonmonotone operator and A and G are allowed to depend on t .
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
1999年第3期337-340,共4页
Journal of Northeastern University(Natural Science)
基金
辽宁省科学技术基金
东北大学科学基金
关键词
非线性发展方程
拓扑度
解
存在性
初值问题
nonlinear evolution equations, monotone type mapping,topological degree.