摘要
在不要求f(x)→±∞(x→±∞)的条件下,利用Brouwer不动点定理,得到了方程组x=φ(y)-f(x),y=-g(x)+e(t)周期解的存在性,并给出了此方程组的一个唯一性结果.另外,通过构造Lyapunov泛函,推广了另一类方程前人的相关结果.
By using Brouwers fixed point theorem, several sufficient conditions for existence and uniqueness of periodic solutions of differential equation x′(t)=φ(y(t))-f(x(t)),y′(t)=-g(x(t))+e(t ) are obtained without the assumption f(x )→±∞ as x →±∞. In addition, the related results of another class of differential equations are given by constructing Lyapunov functions, which extends the known results.
出处
《甘肃工业大学学报》
1999年第2期99-103,共5页
Journal of Gansu University of Technology
基金
甘肃省自然科学基金
关键词
非自治微分方程
周期解
存在性
唯一性
微分方程
nonautonomous differential equations
periodic solution
existence
Lyapunov function
uniqueness