期刊文献+

基于改进自适应粒子群算法的目标定位方法 被引量:9

Research on Target Localization Based on Improved Adaptive Velocity Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 针对现有目标定位求解算法推导复杂和自适应粒子群算法仍存在收敛速度慢、计算量大的缺点,提出了一种基于速度自适应和变异自适应融合的改进粒子群算法。该算法在速度自适应粒子群算法的基础上,优化选择粒子,并根据种群适应度方差值进行自适应变异,增强算法快速收敛的能力。仿真结果表明该方法能有效地提高目标定位精度,在随机噪声干扰方差为0.5的条件下,定位均方误差不超过1.5m,且收敛速度增快,计算量减小。 An improved adaptive particle swarm optimization algorithm based on velocity adaption and mutation adaption was proposed in view of the shortcoming of the existing localization algorithm and standard particle swarm optimizer algorithm,which has complex calculation,convergence speed and large computational load.The method has selected the particle swarm on the adaptive velocity particle swarm optimization algorithm,added adaptive mutation operation in iteration process to enhance its ability of quick convergence,and the mutation probability is adaptively adjusted by variance of the population's fitness.The simulation results indicate that it could carry on the localization effectively through adopting the improved adaptive particle swarm optimization algorithm.when the variance of random noise interference is 0.5,the localization RMSE is below 1.5m,and has high convergence speed and low computational load.
作者 姚金杰 韩焱
出处 《计算机科学》 CSCD 北大核心 2010年第10期190-192,共3页 Computer Science
基金 山西省研究生优秀创新项目(20093079) 电子测试技术国防科技重点实验室基金(9140C1204040908)资助
关键词 目标定位 粒子群算法 速度自适应变异 群体智能 Target localization Particle swarm algorithm Adaptive velocity mutation Intelligent swarm
  • 相关文献

参考文献7

二级参考文献25

  • 1黄艳新,周春光,邹淑雪,王岩.一种求解类覆盖问题的混合算法[J].软件学报,2005,16(4):513-522. 被引量:14
  • 2陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 3刘洪波,王秀坤,谭国真.粒子群优化算法的收敛性分析及其混沌改进算法[J].控制与决策,2006,21(6):636-640. 被引量:62
  • 4Kennedy J,Eberhart R C. Particle swarm optimization[C]. Proc IEEE Int'l Conf on Neural Networks. Piscataway NJ: IEEE Service Center,1995(Ⅳ) :1942-1948.
  • 5Ioan Cristian Trelea. The particle swarm optimization algorithm: converence analysis and parameter selection[J]. Information Processing Letters, 2003, 85 : 317-325.
  • 6Fan Huiyuan. A modification to particle swarm optimization algorithm[J]. Eingeering Coputations,2002,19(18) :970-989.
  • 7飞思科技产品研发中心.神经网络理论及MATLANB7实现[M].北京:电子工业出版社,2005.
  • 8Van Den B F, Engelbrecht A R A Cooperative Approach to Particle Swarm Optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 225-239.
  • 9Liang Jing, Qin Kai, Suganthan P N, et al. Comprehensive Learning Particle Swarm Optimizer for Global Optimiz/ttion of Multimodal Functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281-295.
  • 10Kennedy J, Eberhart R C. Particle swarm optimization [ C ]// Proceedings of IEEE International Conference on Neural Networks. Perth : IEEE, 1995 : 1942-1948.

共引文献59

同被引文献116

引证文献9

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部