期刊文献+

Ising图模型概率推理的参数化复杂性 被引量:2

Parameterized Complexity of Probabilistic Inference in Ising Graphical Model
下载PDF
导出
摘要 Ising图模型概率推理的主要工作是通过变量求和来计算配分函数和边缘概率分布。传统计算复杂性理论证明Ising图模型精确概率推理是#P难的,并且Ising图模型近似概率推理是NP难的。研究了Ising图模型精确概率推理和Ising均值场近似概率推理的参数化复杂性。首先证明了不同参数的Ising图模型概率推理的参数化复杂性定理,指出基于变量个数或图模型树宽的参数化概率推理问题是固定参数可处理的。然后证明了Ising均值场的参数化复杂性定理,指出基于自由分布树宽、迭代次数和变量个数的参数化Ising均值场是固定参数可处理的;进一步,当Ising图模型参数满足Ising均值场迭代式压缩条件时,基于自由分布树宽和迭代次数的参数化Ising均值场是固定参数可处理的。 Probabilistic inference of the Ising graphical model is to compute the partition function and the marginal probabilistic distribution through summing variables.Traditional computational complexity theory shows that the exact probabilistic inference of the Ising graphical model is # P-hard,and the approximate probabilistic inference is NP-hard.We analyzed the parameterized complexities of exact probabilistic inference of the Ising graphical model and the Ising mean field approximate inference.First,we proved the parameterized complexity theorems of probabilistic inference of the Ising graphical model with different parameters,which show that parameterized probabilistic inferences are fixed parameter tractable with the variable number and the graphical model treewidth as parameters respectively.Then,we proved the parameterized complexity theorems of the Ising mean field,which demonstrate that the parameterized Ising mean field is fixed parameter tractable with the combination of the free distribution treewidth,the number of iteration steps and the number of variables as parameter;furthermore,when the Ising graphical model parameters satisfy the contraction condition of the Ising mean field iteration formula,the parameterized Ising mean field is fixed parameter tractable with the combination of the free distribution treewidth and the number of iteration steps as parameter.
出处 《计算机科学》 CSCD 北大核心 2010年第10期207-210,245,共5页 Computer Science
基金 国家自然科学基金(60678049) 天津市应用基础研究计划基金(07JCYBJC14600)资助
关键词 Ising图模型 概率推理 Ising均值场 参数化复杂性 固定参数可处理 Ising graphical model Probabilistic inference Ising mean field Parameterized complexity Fixed parameter tractable
  • 相关文献

参考文献13

  • 1Parisi G. Statistical field theory [M]. Redwood City, CA: Addison-Wesley, 1988 : 110-153.
  • 2Jordan M I. Graphical models [J]. Statistical Science, 2004,19 (1) : 140-155.
  • 3Wainwright M J, Jordan M I. Graphical models, exponential families,and variational inference [J]. Foundations and Trends in Machine Learning, 2008,1 ( 1/2) : 1-305.
  • 4Jordan M I,Ghahramani Z,Jaakkola T S, et al. An introduction to variational methods for graphical models [J]. Newblock Machine Learning, 1999,37(2) : 183-233.
  • 5Jordan M I, Weiss Y. Graphical models: probabilistic inference [M]//Arbib M A, ed,. The Handbook of Brain Theory and Neural Networks. Massachusetts: The MIT Press, 2002: 243- 266.
  • 6Chandrasekaran V,Srebro N, Harsha P. Complexity of inference in graphical models [C]// Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. Corvallis, Oregon: AUAI Press, 2009 : 70-78.
  • 7Jerrum M, Sinclair A. Polynomial-time approximation algorithms for the Ising model [J]. SIAM Journal on Computing, 1993,22(5) : 1087-1116.
  • 8Roth D. On the hardness of approximate reasoning [J]. Artificial Intelligence, 1996,82 (1/2) : 273-302.
  • 9Cooper G F. The computational complexity of probabilistic inference using Bayesian belief networks [J]. Artificial Intelligence, 1990,42 (2/3) :393-405.
  • 10Dagum P, Luby M. Approximating probabilistic inference in Bayesian belief networks is NP-hard [J]. Artificial Intelligence, 1993,60(1) : 141-153.

同被引文献17

  • 1王应明.判断矩阵排序方法综述[J].决策与决策支持系统,1995(3):101-114. 被引量:100
  • 2Parisi G. Statistical field theory[M].Redwood City,CA:Addison-Wesley,1988.110-153.
  • 3Jordan M I. Graphical models[J].Statistical Science,2004,(01):140-155.
  • 4Wainwright M J,Jordan M I. Graphical models,exponential families,and variational inference[J].Foundations and Trends in Machine Learning,2008,(1/2):1-305.
  • 5陈亚瑞.基于消息传播的图模型近似变分推理[D]天津:天津大学,2011.
  • 6Chandrasekaran V,Srebro N,Harsha P. Complexity of inference in graphical models[A].AUAI Press:Corvallis,Oregon,2009.70-78.
  • 7Cooper G F. The computational complexity of probabilistic inference using Bayesian belief networks[J].Aritificial Intelligence,1990,(2/3):393-405.
  • 8Dagum P,Luby M. Approximating probabilistic inference in Bayesian belief networks is NP-hard[J].Artificial Intelligence,1993,(01):141-153.
  • 9Roth D. On the hardness of approximate reasoning[J].Artificial Intelligence,1996,(1/2):273-302.
  • 10Jerrum M,Sinclair A. Polynomial-time approximation algorithms for the Ising model[J].SIAM Journal on Computing,1993,(05):1087-1116.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部