期刊文献+

改进的二维Renyi熵图像阈值分割 被引量:7

Image Threshold Segmentation Based on Improved Two-dimensional Renyi Entropy
下载PDF
导出
摘要 提出一种基于灰度-梯度信息二维Renyi熵图像阈值分割新方法。首先,由图像灰度值和梯度值构造出二维直方图,在此基础上计算目标和背景区域的二维Renyi熵,并使此熵值函数最大,得到分割阈值。像素梯度信息和Re-nyi熵可调参数相结合,可以处理更多类型的图像,同时分割得到的图像内部更均匀,边界形状更准确。 This paper presented a new image threshold segmentation method based on improved two-dimensional Renyi entropy.First,two-dimensional histogram was build according to gray value and gradient value of the pixels,on this basis,calculated two-dimensional Renyi entropy of target and Background region,at last,we got segmentation threshold by maximizing the Renyi entropy function.It can handle more types of images and get more accurate shape of the image edge that pixels gradient information in combination with parameter of Renyi entropy which is adjustable.
出处 《计算机科学》 CSCD 北大核心 2010年第10期251-253,共3页 Computer Science
基金 国家自然科学基金(60575036) 哈尔滨市优秀学科带头人专项基金项目(2007RFXXG023) 哈尔滨理工大学优秀拔尖创新人才培养基金项目(20070105)资助
关键词 图像分割 二维直方图 RENYI熵 阈值选取 Image segmentation Two-dimensional histogram Renyi entropy Threshold selection
  • 相关文献

参考文献9

二级参考文献55

共引文献255

同被引文献58

  • 1杜峰,施文康,邓勇,朱振幅.一种快速红外图像分割方法[J].红外与毫米波学报,2005,24(5):370-373. 被引量:31
  • 2潘喆,吴一全.二维Renyi熵图像阈值选取快速递推算法[J].中国体视学与图像分析,2007,12(2):93-97. 被引量:10
  • 3Sahoo P K, Arora G. A thresholding method based on twodi- mensional Renyi' s entropy [J]. Pattern Recognition, 2004, 37(6):1149-1161.
  • 4Shi Y, Eberhart R C. Empirical study of particle swarm optimi- zation[C]// International Confere- nee on Evolutionary Compu- tation. Washington, USA: IEEE, 2000 : 1945-1950.
  • 5Kennedy J, Eberhart R C. Particle Swarm Optimization [C]// Proc. IEEE International Conference on Neural Networks. Perth,Western Australia: IEEE, 1995 (4) : 1942-1948.
  • 6Sahoo P K,Wilkins C,Yeager J. Thresholding selection using Renyi's entropy[J].Pattem Recognition, 1997,30(1): 71-84.
  • 7Sahoo P K, Arora G, A thresholding method based on two-dimensional Renyi's entropy[J]. Pattern Recognition, 2004, 37(6): 1149-1161.
  • 8Horng Ming-Huwi. Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization[J]. Expert Systems with Applications, 2010, 37(6): 4580-4592.
  • 9Yin Peng-Yeng. Multilevel minimum cross entropy threshold selection based on particle swarm optimization[J]. Applied Mathematics and Computation, 2007, 184(2): 503-513.
  • 10Sanjay Agrawal, Rutupama Panda, Sudipta Bhuyan, et al. Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm[J]. Swarm and Evolutionary Computation, 2013, 11:16--30.

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部