期刊文献+

蛋氨酸电离能与红外光谱的密度泛函理论计算研究 被引量:2

Calculation of Ionization Energy and Infrared Spectra of Methionine with Density Functional Theory
下载PDF
导出
摘要 采用混合密度泛函理论中的B3LYP方法,并结合6-31G(d)、6-31G(df,p)、6-31+G(d)和6-311+G(2d,2p)四种基组,首次系统地计算了蛋氨酸在空气、四氯化碳、四氢呋喃、水和模拟蛋白质环境中的几何结构、电离能和红外光谱。研究结果表明,在不同的基组和介质环境下,蛋氨酸的几何参数与晶体结构实验参数相比,其键长和键角的差值分别小于0.0271(?)和5.32°;但二面角相差12.04°~122.11°;在同一计算方法下,介质的介电常数越高,分子的单点能越低,电离能也越小,对应的主要振动频率随之减小,强度增大;蛋氨酸的电离能比组氨酸的计算结果高0.33eV~0.56eV。所有数据均显示,较高基组下的计算结果更接近实验值。该研究为深入探索叶绿素与蛋氨酸配位后在光反应中心中的功能与作用提供了理论参考依据。 In combination with four basis sets:6-31G(d),6-31G(df,p),6-31+G(d) and 6- 311+G(2d,2p),a B3LYP method of the hybrid density functional theory is used to calculate the geometry, ionization energy and infrared spectra of methionine in air,CC14,THF,water and simulated protein environment systematically for the first time.The research result shows that for different basis sets and media,the changes in bond length and bond angle of methionine are less than 0.027l(?)and 5.322°respectively compared with those of the crystal structure.But their changes in dihedral angle are in the range 12.04°to 122.11°.With a same calculation method,the higher the dielectric constant of the medium is,the lower the single point energy is and the lower the ionization energy is.Thus, the prominent corresponding vibration frequencies decrease and the intensity increases.The ionization energy of methionine is 0.33eV to 0.56eV higher than the calculation result of the histidine.All calculations show that the results calculated by using the higher basis sets with diffusion functions are closer to the experimental data.This study is helpful to the further understanding of functional and vibrational properties of chlorophyll-a ligated to methionine in photosynthetic reaction center.
出处 《红外》 CAS 2010年第10期21-25,35,共6页 Infrared
基金 国家自然科学基金项目(10764006)
关键词 蛋氨酸 红外光谱 电离能 密度泛函理论 methionine infrared spectrum ionization energy density functional theory(DFT)
  • 相关文献

参考文献20

  • 1Heimdal J,Jensen K P,Devarajan A,et al.The role of axial ligands for the structure and function of chlorophylls[J].J Biol Inorg Chem,2007,12(1):49-61.
  • 2Webber A N,Ramesh,Velupillaimani M.The light driven plastocyanin:ferredoxin oxidoreductase[M].Springer:Dordrecht,2006.
  • 3Jordan P,Fromme P,Witt H T,et al.Threedimensional structure of cyanobacterial photosystem I at 2.5 angstrom resolution[J].Nature,2001,411(6840):909-917.
  • 4Ramesh V M,Gibasiewicz K,Lin S,Bingham S E.Bidirectional electron transfer in photosystem I:accumulation of A0-in A-side or B-side mutants of the axial ligand to chlorophyll AO [J]. Biochemistry,2004, 43(5): 1369-1375.
  • 5Ramesh V M,Gibasiewicz K,Lin S,et al.Replacement of the methionine axial figand to the primary electron acceptor A0 slows the A0-reoxidation dynamics in photosystem I [J]. Biochim Biophys Acta,2007, 1767(2): 151-160.
  • 6Hastings G,Hoshina S,Webber A,et al.Universality of energy and electron transfer processes in photosystem I[J].Biochem,1995,34(47):15512-15522.
  • 7Wolpert M,Hellwig P Infrared spectra and molar absorption coefficients of the 20 alpha amino acids in aqueous solutions in the spectral range from 1800 to 50 0 cm^-1 [J]. Spectrochimica Acta Part A, 2006,64(4): 987-1001.
  • 8Koleva B B.Solid-state linear-polarized IR-spectroscopic characterization of L-methionine[J].Vibrational Spectroscopy,2007,44(1):30-35.
  • 9Briget Mary M,Sasirekha V,Ramakrishnan V.Vibrational spectral analysis of dl-valine dl-valinium and dl-methionine dl-methioninium picrates[J].Spectrochimica Acta Part A, 2006, 65(3): 955-963.
  • 10Barth A.Infrared spectroscopy of protein[J].Biochimica et Biophysica Acta,2007,1767(9):1073-1101.

二级参考文献37

  • 1Koji Hasegawa, Taka-aki Ono, Takumi Noguchi. Vibrational spectra and ab initio DFT calculations of 4- methylimidazole and its different protonation forms: Infrared and Raman markers of the protonation state of a histidine side chain [J]. J. Phys. Chem. B, 2000, 104(17): 4253-4265.
  • 2Jimmy Heimdal, Kasper P Jensen. Ajitha Devarajan and Ulf Ryde, The role of axial ligands for the structure and function of chlorophylls [J]. a Biol Inorg Chem, 2007, 12: 49-61.
  • 3Patrick Jordan, Petra Fromme, Horst Tobias Witt, et al. Three-dimensional structure of cyanobacterial photosystem Ⅰ at 2.5 angstrom resolution [J]. Nature, 2001, 411(6840): 909-917.
  • 4Ramesh, V M, Krzysztof Gibasiewicz, Su Lin, Scott E Bingham, et al. Replacement of the methionine axial ligand to the primary electron acceptor A0 slows the Ao reoxidation dynamics in Photosystem Ⅰ [J]. Biochimica et Biophysica Acta, 2007, 1767: 151 160.
  • 5Garfinkel D, J Edsall. Raman Spectra of Amino Acids and Related Compounds. Ⅷ. Raman and Infrared Spectra of Imidazole, 4-Methylimidazole and Histidine [J]. J. Am. Chem. Soc., 1958, 80: 3807- 3812.
  • 6Frisch M J, Trucks G W, Schlegel H B, et al. Gnussian, Zero.Three Version W [M], Pittsburgh PA, 2003. Gaussian, Inc.
  • 7Foresman 3 B, A Frisch. Exploring Chemistry with Electronic Structure Methods (2nd Edition) [M]. 1996, Pittsburgh: Gaussian, Inc.
  • 8Tomasi J, B Mennucci, E Cances. The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level [J]. Journal of Molecular Structure-Theochem,1999, 464(1 3):211-226.
  • 9Majoube M, P Millie, G Vergoten. Vibrational- Spectra of 4-Methylimidazole - Assignment of Modes and Calculation of Raman and Resonance Raman Intensities at the Ab-Initio 6-31g Level [J]. Journal of Molecular Structure, 1995, 344(1 2): 21-36.
  • 10Noguchi T, Y Inoue, X S Tang. Structure of a histidine ligand in the photosynthetic oxygen-evolving complex as studied by light-induced Fourier transform infrared difference spectroscopy [J]. Biochemistry, 1999, 38(31): 10187-10195.

共引文献4

同被引文献13

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部