期刊文献+

一种改进的进化神经网络优化设计方法 被引量:4

An Improved Evolution Optimization of Neural Network
下载PDF
导出
摘要 基于传统遗传算法优化神经网络时存在的"近亲繁殖"、基因编码冗余和难以确定隐节点数等问题,提出改进的进化神经网络优化设计方法.通过对网络编码形式的规范,使得基因编码与功能等价类一一对应,从而降低编码冗余;通过节点相关性评价,使得低于某阈值的节点在交叉操作时被排除,从而降低节点冗余;通过把交叉变异概率与种群个体适应度比例相联系,提出自适应交叉变异概率,较好保持种群多样性.仿真实验表明,本方法可以避免"近亲繁殖"以及由此导致的"种群早熟",降低编码冗余,减少学习参数,提高学习效率. Improved evolutionary optimization of neural network design is proposed,because there are inbreeding and coding redundancy and it is difficult to determine the number of hidden node.There is a one to one correspondence between gene coding and functional equivalence class,through normalizing of network coding,which decreases the coding redundancy.Through the evaluation of node correlations,the nodes whose correlation value is less than a certain threshold would be deleted during crossover operation so that decreasing the node redundancy.Furthermore,through the combination of crossover probability and mutation probability,the diversity of the network could be held.The experiments show that proposed approach of neural network avoids inbreeding and premature convergence aroused by inbreeding,while increasing the learning speed,and reducing the code redundancy and learning parameters.
出处 《郑州大学学报(工学版)》 CAS 北大核心 2010年第5期116-120,共5页 Journal of Zhengzhou University(Engineering Science)
基金 云南省自然科学基金资助项目(2009ZC128M) 重庆师范大学自然科学基金项目(10XLB006)
关键词 神经网络 遗传算法 基因编码 交叉概率 变异概率 节点相关性 neural network genetic algorithm gene coding crossover probability mutation probability correlation between nodes
  • 相关文献

参考文献12

  • 1HU Z H. A Hybrid system based on neural network and immune co - evolutionary algorithm for garment pattern design optimization [ J ]. Journal of Computers, 2009,4(11):1151 -1158.
  • 2ANAM S, SHOHIDUL I M. Face Recognition Using Genetic Algorithm and Back Propagation Neural Network[ C ]//The International Multiconference of Engineeris and computer Scientists IMECS 2009 Hong Kong: The International Assouation of Engineers. 2009 : 18 - 20.
  • 3NICOLAS G P,DOMINGO O B, CASAR H M. An alternative approach for neural network evolution with a genetic algorithm : crossover by combinatorial optimization [ J ]. Neural Networks,2006,19 (4) :514 - 528.
  • 4KHARBAT F, BULL L, ODEH M. Revisiting genetic Selection in the XCS Learning Classifier System [ C ]. England: Sch of Comput Sci,2005:2061 -2068.
  • 5SERGEI L, POND K, FROST S D. A genetic algorithm approach to detecting lineage - specific variation in selection pressure[ J]. Molecular Biology and Evolution ,2005,22 ( 3 ) :478 - 485.
  • 6KHAN A U, BANDOPADHYAYA T K. Genetic algorithm based backpropagation neural network performs better than backpropagation neural network in stock rates prediction [ J ]. International Journal of Computer Science and Network Security, 2008,8 ( 7 ) : 162 - 166.
  • 7LAW N L, SZETO K Y. Adaptive Genetic Algorithm with Mutation and Crossover Matrices[ C ]. USA: Morgan Kaufmann Publishers Inc,2007:2330-2333.
  • 8王利平,刘志强,宗永臣.黄河流域年降水量反算与分析[J].人民黄河,2007,29(11):36-38. 被引量:3
  • 9冯冬青,郭艳.遗传算法改进BP神经网络在地下水水质评价中的应用[J].郑州大学学报(工学版),2009,30(3):126-129. 被引量:12
  • 10张晓缋,戴冠中,徐乃平.遗传算法种群多样性的分析研究[J].控制理论与应用,1998,15(1):17-23. 被引量:77

二级参考文献27

共引文献123

同被引文献24

  • 1赵温波,王立明,黄德双.最大绝对误差结合微遗传算法优化径向基概率神经网络[J].计算机研究与发展,2005,42(2):179-187. 被引量:3
  • 2YAO X, LIU Y. A new evolutionary system for evolving artificial neural networks [ J ]. IEEE Tranactions on Neural Network, 1997,8 (3) : 694 - 713.
  • 3XIA You-shen, FENG Gang, WANG Jun. A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations[J]. Neural Networks, 2004,17 (7) : 1003-1015.
  • 4XUE Xiao-ping, BIAN Wei. A project neural network for solving degenerate convex quadratic program[J]. Neuro- computing, 2007,70(13/15) : 2449-2459.
  • 5LIU Qing-shan, CAO Jin-de, Global exponential stability of discrete-time recurrent neural network for solving quad- ratic programming problems subject to linear constraints[J]. Neurocomputing,2011,74(17):3494-3501.
  • 6TAO Qing,CAO Jin-de,Demin Sun. Neural network for quadratic programming problems[J]. Applied Mathematics and Computation, 2001,124(2) : 251-260.
  • 7HASAN G O, NEZAM M A. An efficient simplified neural network for solving linear and quadratic programming Dmblems[J]. APplied Mathematics and Computation, 2006,175 (1), 452-464.
  • 8YANG Yong-qing, CAO Jin-de. A feedback neural network for solving convex constraint optimization problems[J]. Applied Mathematics and Computation, 2008,201(1/2) : 340-350.
  • 9BERTSEKAS D P. Parallel and distributed computation: Numerical methods [M]. Englewood Cliffs: Prentice- Hall, 1989.
  • 10HALE J K, VERDUYN-LUNEL S M. Introduction to functional differential equations[M]. New York: Springer, 1993.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部