期刊文献+

混合故障模型下离散 Hopfield 联想存储器的鲁棒性 被引量:4

Robustness of discrete Hopfield associative memories under mixed fault model
原文传递
导出
摘要 离散 Hopfield 联想存储器( D H A M)在联想记忆方面有很大的优点,但是在硬件实现过程中存在着各种故障。对于软硬故障同时存在情况下 D H A M 的性能进行分析是很有必要的。该文对 D H A M 建立了同时包含权值误差、权值断路、神经元输出固值等各种软、硬故障的故障模型,定义了概率意义下 D H A M 的鲁棒性。运用概论统计的方法推导出了运行于同步方式下 D H A M 的鲁棒性,推导中对结果进行了近似处理。对 D H A M 系统进行了仿真实验,与利用这种鲁棒性分析方法计算进行了对比,结果相差非常小,证实了此方法的正确性,可以用于 D H A M 的可靠性计算。 Discrete Hopfield associative memories (DHAM) has great advantage in associative recalling. But there are kinds of faults in the DHAM implemented with hardware. The analysis on DHAM's properties under these soft and hard faults is necessary. A DHAM's mixed fault model was established, including both soft faults such as weights errors and hard faults such as weights broken connections, neuron stuck at faults. And the robustness of DHAM was derived using probability and statistic method, with some approximate reasoning using. The results obtained in the simulation on a DHAM system under this mixed fault model show very small diversity with the calculating results using this robustness analysis method. This shows that this method is right and it can be used in DHAM reliability calculation.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 1999年第7期46-49,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金 国家教委博士点基金
关键词 联想存储器 神经网络 鲁棒性 DHAM 混合故障模型 discrete Hopfield associative memories neural networks robustness mixed fault model
  • 相关文献

参考文献8

  • 1盛聚 谢式千 等.概率论与数理统计[M].北京:高等教育出版社,1989.157-183.
  • 2杨良土.人工神经网络的鲁棒性分析[博士学位论文].北京:清华大学自动化系,1997..
  • 3复旦大学.概率论(第一册:概率论基础)[M].北京:高等教育出版社,1987..
  • 4杨良土,博士学位论文,1997年
  • 5Liu D,IEEE Circuit Syst Soceds Proc 36th Midwest Symposium on Circuitand Systems Detroit MI,1993年,1007页
  • 6Huang Y P,Proc IJCNN,1991年,2677页
  • 7盛骤,概率论与数理统计(第2版),1989年
  • 8复旦大学,概率论.1,1979年

共引文献12

同被引文献21

  • 1Hopfield J J, Neural networks and physical systems with emergent collective computational abilities [J].Proceedings of the National Academy of Sciences USA, 1982,79(8) :2554- 2558.
  • 2Quan Y B, Zhang H G. Modeling and control based on a new neural network model[A]. In: Proceedings of American Control Conference[C]. Washington, America,2001.
  • 3Liu D R, Lu Z, A new synthesis approach for feedback neural networks based on the perceptron training algorithm [J]. IEEE Transactions on Neural Networks, 1997,8(12) : 1468 - 1482.
  • 4Liu D R, Michel A N. Robustness analysis of a class of neural netwocks[A].In:Proceedings of the 36th Midwest Symposium on Circuit and Systems[C]. Detroit, MI, USA, 1993, Ⅱ : 1077 - 1080.
  • 5Singh V. Rtbust stability of cellular neural networks with delay: linear matrix[J]. IEE Proc-Control Theory Appl ,2004,151(1):125-129.
  • 6Michel A N, Wang K,Hu B. Qualitative Theory of Dynamical Systems The Role of Stability Preserving Mappings [M]. Second Edition. New York, NY: Marcel Dekker,2001.
  • 7Boyd S, EI Ghaoui L, Feron E, et al. Linear Matrix Inequalities in System and Control Theory[ M]. SIAM, Philadelphia, 1994.
  • 8Hale J Tneory of Functional Differential Equations. Berlin, German:Springer-Verlag, 1977.
  • 9Khusainov D Y, Yun'kova E A. Eaimation of magnitude of retardation in linear differential systems with deviated argument. Ukrainskii Matematicheskii Jhurnal, 1981,35(2) :261 - 264.
  • 10Nobuhiko Ikeda, Paul Watta, Metin Artiklar, Mohamad H.Hasssun. A two-level Hamming network for high performance associative memory[J]. Neural Networks,2001;14:1198-1200.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部