期刊文献+

乘积矩阵的奇异值估计 被引量:2

Estimation of Singular Values for Product Matrices
下载PDF
导出
摘要 本文给出了m 个矩阵乘积的奇异值估计:m ax∑mj= 1i(j)= (m- 1)n+ i∏mj= 1σ(j)i(j) ≤σi ≤ m in∑mj= 1i(j)= i+ m - 1∏mj= 1σ(j)i(j),  1 ≤i≤n同时给出了∑ki= 1 σi,∏ki= 1 σi In this paper,the authors give the estimation of singular values for product of m matrices: max ∑mj=1i (j) =(m-1)n+i ∏mj=1σ (j) i (j) ≤σ i≤ min ∑mj=1i\+\{(j)\}=i+m-1 ∏mj=1σ (j) i (j) , 1≤i≤nand give a lower bound of ∑kj=1σ\-i and ∏ki=1σ\-i as well.
出处 《浙江师大学报(自然科学版)》 CAS 1999年第3期26-28,共3页 Journal of Zhejiang Normal University(Natoral Sciences)
关键词 矩阵 乘积 奇异值估计 下界 product of matrices estimation of singular values lower bound
  • 相关文献

参考文献1

二级参考文献1

  • 1陈道琦,数学学报,1988年,31卷,4期,565页

共引文献17

同被引文献11

  • 1纪志成,赵维一,谢林柏.时延网络控制系统的协同设计方法研究[J].系统科学与数学,2007,27(3):440-450. 被引量:2
  • 2Chang R J, Lin S J. Information closure method for dynamic analysis of nonlinear stochastic systems. Journal of Dynamic Systems, Measurement and Control, 2002, 124(3): 353-363.
  • 3Engell S. An information-theoretic approach to regulation. International Journal of Control, 1985, 41(2): 557-573.
  • 4Hyland D C. Maxinum entropy stochastic approach to control design for uncertain structural. Proceedings of 1982 American Control Conference, Arlington, 1982.
  • 5Hartley R V L. Transmission of information. Bell System Technical Journal, 1928, 7(3): 535-563.
  • 6Jagerman D. e-Entropy and approximation of band-limited functions. SIAM Journal on Applied Mathematics, 1969, 17(2): 362-377.
  • 7Nair G N. A nonstochastic information theory for communication and state estimation. IEEE Transactions on Automatic Control, 2013, 58(6): 1497-1510.
  • 8Nair G N. A nonstochastic information theory for feedback. Proceedings of the 51st IEEE Conference on Decision and Control, Hawaii, 2012.
  • 9Korner J, Orlitsky A. Zero-error information theory. IEEE Transactions on Automatic Control, 1998, 44(6): 2207-2229.
  • 10宋杨,董豪.马尔可夫跳变系统平均驻留时间的估算[J].北京工业大学学报,2012,38(12):1853-1856. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部