期刊文献+

智能识别中的降维算法简述

An Introdution to Dimensionality Reduction Algorithms in Intelligent Recognition
下载PDF
导出
摘要 近年来降维方法作为智能识别中关键的数据预处理技术得到了较为成功地运用。在总结比较经典的降维方法的基础上,分别从特征选择和特征提取两个方面来阐述各种方法所具有的特点和优势,并在一定程度上指出相应方法在目前所存在的问题和挑战。 Dimensionality reduction algorithms,as the key technologies of data preprocessing in intelligent recognition,have been used successfully recently.On the basis of the comparison of the classical dimensionality reduction algorithms,the characteristics and advantages of each algorithm are formulated from the perspectives of feature-selection and feature-extraction separately and the corresponding problems and challenges about each of them are pointed out to certain extent.
作者 皋军
出处 《盐城工学院学报(自然科学版)》 CAS 2010年第3期14-20,31,共8页 Journal of Yancheng Institute of Technology:Natural Science Edition
基金 盐城工学院应用基础研究资助项目(XKY2009070)
关键词 特征降维 特征选择 特征提取 智能分析 feature dimensionality reduction feature selection feature extraction intelligent recognition
  • 相关文献

参考文献57

  • 1Huang J Z X, Ng M K, Rong H Q, et al. Automated variable weighting in k - Means type clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27 ( 5 ) :657 - 668.
  • 2Kira K, Rendell L A. Apractical approach to feature selection [ J ]. In Proceedings of the 9th International Workshop on machine Learning. SanFraneisco, CA: MorganKaufmann, 1992:249 - 256.
  • 3Sun Y J. Iterative Relief for features weighting:algorithms, theories, and applications [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(6) :1 035 -1 051.
  • 4皋军,王士同.具有特征排序功能的鲁棒性模糊聚类方法[J].自动化学报,2009,35(2):145-153. 被引量:16
  • 5Lee K E, Sha N, Dougherty E R, Varmucci M, Mallick BK. Gene selection: A Bayesian variable selection approach[J]. Bioinformatics ,2003,19 ( 1 ) :90 - 97.
  • 6Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer : Class discovery and class prediction gene expression monitoring [ J ]. Science, 1999,286 : 531 - 537.
  • 7Varma S, Simon R. Iterative class discovery and feature selection using minimal spannig trees [ J ]. BMC Bioinformatics, 2004,5 : 118 - 126.
  • 8TH B, Jonassen I. New feature subset selection procedures for classification of expression profiles [ J ]. Genome Biology, 2002,3(4) :1 - 17.
  • 9Jacek B, WlodZislaw D, Adam K, et al. Feature ranking methods based on information entropy with parzen windows [ C ]. International Conference on Research in Electrotechnology and Applied lnformatics, Katowice,Poland,2005.
  • 10Deng Z H, Chung F L, Wang S T. FRSDE. Fast reduced set density estimator using minimal enclosing ball approximation [ J ]. Pattern Recognition, 2008,41 (4) : 1 363 - 1 372.

二级参考文献77

共引文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部