摘要
设Heisenberg群上散度型抛物方程的系数是实值有界可测函数,满足一致椭圆条件,且关于X1,X2,…,X2n诱导的拟距离是VMO函数.利用Heisenberg群上的奇异积分及其交换子的Morrey有界性和凝固系数法,研究了散度型抛物方程的弱解在广义Morrey空间中的正则性.
Let the coefficients of the divergence parabolic equation on the Heisenberg group be real valued,bounded measurable VMO functions with respect to a quasidistance induced by vector fields X1,X2,…,X2n and satisfy the uniform elliptic condition.By making use of boundedness of singular integral operators and their commutators on Morrey spaces defined on the Heisenberg group and the freezing coefficients argument,the regularity in Morrey spaces of weak solutions of the divergence parabolic equation is established.
出处
《内蒙古师范大学学报(自然科学汉文版)》
CAS
2010年第5期447-450,共4页
Journal of Inner Mongolia Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(10871157)
高等学校博士学科点专项科研基金(200806990032)
西北工业大学科技创新基金(2008KJ02033)