期刊文献+

一种基于改进粒子滤波算法的盲信号分离

Blind Signal Separation based on Improved Particle Filter Algorithm
下载PDF
导出
摘要 提出把粒子滤波算法应用于信号的盲分离,采用Rao-Blackwellisaion策略减少状态空间抽样维数,引入可逆的跳马尔科夫链蒙特卡洛方法(RJMCMC)有效地抽样不同维数的参数子空间,并采用了基于Epanechnikov核的建议分布。仿真结果表明该算法能够在线跟踪信号源个数的变化并且具有较好的分离性能。 Particle filtering is proposed to solve the blind sources separation incorporated Rao-Blackwellisaion strategy,combined Reversible Jump Markov Chain Monte Carlo method(RJMCMC)and introduced the Epanechnikov kernel based propose distribution.Simulation results demonstrate that the proposed algorithm can effectively track the number dynamics of the source and has good separation performance.
出处 《火力与指挥控制》 CSCD 北大核心 2010年第9期189-192,共4页 Fire Control & Command Control
基金 南京信息工程大学科研基金(20070010) 教育部博士点基金资助项目(200802880014)
关键词 盲分离 粒子滤波 RJMCMC blind separation particle filtering RJMCMC
  • 相关文献

参考文献11

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 2李小军,朱孝龙,张贤达.盲信号分离研究分类与展望[J].西安电子科技大学学报,2004,31(3):399-404. 被引量:33
  • 3Cichocki A,Karhunem J,Kasprzak W,et al.Neural Networks for Blind Separation with an Unknown Number of Source Signals[J].Neurocomputation,1999,24(1):55-93.
  • 4Feng D Z,Zhang X D,Bao Z,An Efficient Multistage Decomposition Approach for Independent Components[J].Signal Processing,2003,83(1):181-197.
  • 5冶继民,张贤达,朱孝龙.信源数目未知和动态变化时的盲信号分离[J].中国科学(E辑),2005,35(12):1277-1287. 被引量:20
  • 6Liu K,Li H,Dai X C,et al.Particle Filtering based Separation of Chaotic Signals[J].Journal of Information & Computational Science,2005,2(2):283-287.
  • 7Christorhe A,Arnaud D.Particle Methods for Change Detection,System Identification,and Control[J].Rroceedings of the IEEE,2004,92:423-438.
  • 8Ahmed A,Andrieu C,Doucet A,et al.On-line Non-stationary ICA using Mixturemodels[C] //ICASSP,2000:3148-3151.
  • 9Christorhe A,Arnaud D.Particle Methods for Change Detection,System Identification,and Control[J].Rroceedings of the IEEE,2004,92.423-438.
  • 10Doucet A,Godsill S,Andrieu C.On Sequential Monte Carlo Sampling Methods for Bayesian Filtering[J].Statist.Comput,2000,10(3):197-208.

二级参考文献106

  • 1张贤达,保铮.盲信号分离[J].电子学报,2001,29(z1):1766-1771. 被引量:211
  • 2[1]Amari S.A theory of adaptive pattern classifiers [J].IEEE Trans.Electronic Computers,1967,16:299-307.
  • 3[2]Amari S.Natural gradient works efficiently in learning [J].Neural Comoutation,1998,10:251-276.
  • 4[3]Amari S,Cichocki A.Adaptive blind signal processing:Neural network approaches [J].Proc.IEEE,1998 ,86:2026-2048.
  • 5[4]Basak J,Amari S.Blind separation of uniformly distributed signals:A general approach [J].IEEE Trans.Neural Networks,1999,10:l173-1185.
  • 6[5]Bell A J,Sejnowski T J.An information-maximization approach to blind separation and blind deconvolution [J].Neural Computation,1995,7:1129-1159.
  • 7[6]Burel G.Blind separation of .sources:A nonlinear neural algorithm [J].Neural Networks,1992,5:937-947.
  • 8[7]Cao X R,Liu R W.A general approach to blind source separation [J].IEEE Trans.Signal Processing,1996,44:562-571.
  • 9[8]Cardoso J F.Blind signal separation:Statistical principles [J].Proc.IEEE,1998,86(10):2009-2025.
  • 10[9]Cardoso J F,Laheld B.Equivariant adaptive source separation [J].IEEE Trans.Signal Processing,1996,44:3017 - 3029.

共引文献248

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部