期刊文献+

基于交互最小二乘优化的高光谱影像端元光谱分析 被引量:3

Endmember Analysis for Hyperspectral Imagery Based on Alternative Least Square Optimization
原文传递
导出
摘要 提出了基于交互最小二乘优化的高光谱影像端元光谱计算方法,利用ALS计算的灵活性将多种对组分丰度和被估计光谱的约束条件加入到ALS迭代计算中,以传统算法得到的端元光谱作为初始,并考虑数据的特殊性建立了适合于高光谱影像的端元分析方法。模拟数据分析和Cuprite矿区的光谱分析结果证明了本文算法能很好地处理不严格假设纯光谱存在情况下的端元提取问题。 Endmember extraction is very important in mixed spectral analysis,which aims to identify the pure source signal from the mixture.In the past decade,many algorithms have been proposed to perform this estimation.One commonly used assumption is that all the endmembers have pure pixel representation in the scene.When such pixels are absent,these algorithms can only return certain pixels that are close to the real endmembers.To overcome this problem,we present a pure spectral calculation method without the pure pixel assumption for hyperspectral image analysis.The method is based on the alternative least square optimization,for its flexibility in containing several constraints for abundance and spectral,which refers to nonnegative,equality,closure,normalization and simplex volume constraints.There are other three problems are exploited: First,the traditional endmember algorithms are used for initialization;Second,spatial redundancy reduction is included in the preprocess procedure.The experimental results based on synthetic toy example and Cuprite mine area hyperspectral scene demonstrate that the proposed method can handle the pure pixels absent problem very well.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2010年第10期1217-1221,共5页 Geomatics and Information Science of Wuhan University
基金 国家973计划资助项目(2009CB723905) 国家863计划资助项目(2009AA12Z114) 国家自然科学基金资助项目(40930532 40901213 40771139)
关键词 混合像元 端元提取 ALS 高光谱影像 mixed pixel endmember extraction ALS hyperspectral imagery
  • 相关文献

参考文献12

  • 1Keshava N. A Survey of Spectral Unmixing Algorithms[J]. Lincoln Laboratory Journal, 2003, 14 (1) :55-68.
  • 2Du Qian, Raksuntorn N, Younan N H, et al. Endmember Extraction for Hyperspectral Image Analysis[J]. Applied Optics, 2008:47(28) :77 -84.
  • 3吴波,汪小钦,张良培.端元光谱自动提取的总体最小二乘迭代分解[J].武汉大学学报(信息科学版),2008,33(5):457-460. 被引量:7
  • 4吴柯,牛瑞卿,李平湘,张良培.基于模糊ARTMAP神经网络模型的遥感影像亚像元定位[J].武汉大学学报(信息科学版),2009,34(3):297-300. 被引量:7
  • 5Craig M D. Minimum-volume Transforms for Remotely Sensed Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(3): 542-552.
  • 6Winter M E. N-findr An Algorithm for Fast Autonomous Spectral Endmember Determination in Hyperspectral Data[C]. SPIE Conf Imaging Spectrometry, Pasadena, CA, 1999.
  • 7Boardman J W. Automating Spectral Unmixing of AVIRIS Data Using Convex Geometry Concepts [C]. The 4th Annual JPL Airborne Geoscience Workshop, Jet Propulsion Laboratory, Pasadena, CA, 1993.
  • 8Anna de Juan, Rom Tauler. Multivariate Curve Resolution (MCR) from 2000: Progress in Concepts and Applications[J]. Critical Reviews in Analytical Chemistry, 2006, 36(3):163-176.
  • 9Miao Lidan, Qi Hairong. Endmember Extraction From Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix Factorization [J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(3): 765-777.
  • 10Berman M, Kiiveri H, I.agerstrom R, et al. ICE: A Statistical Approach to Identifying Endmembers in Hyperspectral Images[J]. IEEE Trans Geoscience and Remote Sensing, 2004,42(10): 2 085-2 095.

二级参考文献14

  • 1Atkinson P M, Cutler M, Lewis H G. Mapping Sub-pixel Proportional Land Cover with AVHRR Imagery[J]. International Journal of Remote Sensing, 1997, 18(4):917-935
  • 2Tatem A J, Lewis H G, Atkinson P M, et al. Land Cover Mapping at the Sub-pixel Scale Using a Hopfield Neural Network [C]. The 28th International Symposium on Remote Sensing of Environment,Cape Town, Africa, 2000
  • 3Tatem A J, Lewis H G, Atkinson P M, et al. Super-resolution Land Cover Pattern Prediction Using a Hopfield Neural Network[J]. Remote Sensing of Environment, 2002, 79:1-14
  • 4Mertens K C, Verbeke L P C, Ducheyne E I, et al. Using Genetic Algorithms in Sub-pixel Mapping [J]. International Journal of Remote Sensing, 2003, 24(21): 4 241-4 247
  • 5Baraldi A, Binaghi E. Comparison of the Multi-layer Perception with Neuro-fuzzy Techniques in the Esti- mation of Cover Class Mixture in Remotely Sensed Data[J] IEEE Transactions on Geoscience and Remote sensing, 2001, 39(5) .. 994-1 005
  • 6Gallant S. Network Learning and Expert Systems [M]. New York:The MIT Press,1992
  • 7Gopal S, Fischer M M. Fuzzy ARTMAP--A Neural Classifier for Multi-spectral Image Classification [ M]. Berlin :Spinger-Verlag, 1997
  • 8Mertens K C, Verbeke L P C, Toon W, et al. Subpixel Mapping and Sub-pixel Sharpening Using Neural Network Predicted Wavelet Coefficients[J]. Remote Sensing of Environment, 2004, 91:225- 236
  • 9Heinz D, Chang C I. Fully Constrainted Least Squares Linear Mixture Aanlysis for Material Quantification in Hyperspetral Imagery [J]. IEEE Trans on Geosei and Remote Sens, 2001, 39(3) : 529-545
  • 10Gong P, Zhang A. Noise Effect on Linear Spectral Unmixing[J]. Geograph Inform Sci, 1999, 5(1) : 52-57

共引文献12

同被引文献34

  • 1张友静,黄浩,马雪梅.基于KPCA和SAM的城市植被遥感分类研究[J].地理与地理信息科学,2006,22(3):35-38. 被引量:13
  • 2王树根,王军利,王爱萍.基于整体变分模型的影像阴影检测算法研究[J].武汉大学学报(信息科学版),2006,31(8):663-666. 被引量:27
  • 3Othman H, Qian Shenen. Noise Reduction of Hyperspectral Imagery Using Hybrid Spatial-Spectral Derivative-Domain Wavelet Shrinkage [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(2):397-408.
  • 4Debacker S, Pizurica A, Huysmans B, et al. De noising of Multicomponent Images Using Wavelet Least-Squares Estimators [J]. Image and Vision Computing, 2008, 26(7):1 038-1 051.
  • 5l.ennon M, Mercier G. NonlinearFiltering of Hyperspectral Images with Anisotropic Diffusion[C].Geoscience and Remote Sensing Symposium, To ronto, Canada, 2002.
  • 6Martin Herrero J. Anisotropie Diffusion in the Hy percube[J]. 1EEE Transactions on Geoscience and Remote Sensing, 2007, /15(5):1 386-1 398.
  • 7Letexier D, Bourennane S, Blanc-Talon J. Nonorthogonal Tensor Matricization for Hyperspectral Image Filtering[J]. IEEE Geoscienee and Remote Sensing Letters, 2008, 5(1):3-7.
  • 8Rudin L, Osher S, Fatemi E. Nonlinear Total Variation Based Noise Removal Algorithms[J]. Physica D, 1992, 60:259-268.
  • 9Green A A, Berman M, Switzer P A. Transforma- tion for Ordering Multispectral Data in Terms of Image Quality with Implications for Noise Removal[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(1):65 74.
  • 10Hosseini S A, Ghassemian H. A New Fast Algo- rithm for Multiclass Hyperspectral Image Classifica- tion with SVM[J]. International Journal of Remote Sensing,2011,32(23) : 8 657-8 683.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部