期刊文献+

基于邻接序列模式挖掘的网络流量分析

Network Trend Analysis based on Contiguous Sequential Mining Patterns
下载PDF
导出
摘要 在网络流量模式挖掘中,发现邻接序列模式(CSP)是一个重要问题,为网络流量分析提出了一种新的树型数据结构。为了有效存储包含指定项的所有序列,该树组合了前缀树和后缀树,这种特殊的树结构确保了CSP检测的有效性。实验表明与已有方法相比,使用该结构不仅改进了CSP挖掘的时间性能,而且改进了空间性能。 Finding Contiguous Sequential Patterns (CSP) is an important problem in network trend mining. In this paper we propose a new data structure, UpDown Tree, for CSP mining. An UpDown Tree combines suffix tree and prefix tree for efficient storage of all the sequences that contain a given item. The special structure of UpDown Tree ensures efficient detection of CSPs. Experiments show that UpDown Tree improves CSP mining of both time and memory usage comparing to existing methods.
作者 师鸣若
机构地区 北京物资学院
出处 《电脑开发与应用》 2010年第10期6-8,共3页 Computer Development & Applications
基金 "十一五"国家科技支撑计划重点项目课题(2009BAH46B06) 北京市属高等学校人才强教计划资助项目(PHR200906210) 北京市教育委员会科研基地建设项目(WYJD200902) 北京市教育委员会科技计划项目(KM200910037002) 北京市哲学社会科学规划项目(09BaJG258)
关键词 序列模式 数据挖掘 流量分析 sequential patterns, data mining, flow analysis
  • 相关文献

参考文献7

  • 1Agrawal R, Srikant R. Mining Sequential Patterns[C]//Proceedings of the Eleventh International Conference on Data Engineering(ICDE'95), Taipei: Taiwan, 1995.
  • 2Lee W, Stolfo S J. Data Mining Approaches for Intrusion Detection [C]//Proceedings of the 7th (USENIX) Security Symposium, San Antonio, TX, 1998-09-18.
  • 3师鸣若,姜中华,申贵成.基于流量数据的分层态势评估算法[J].微计算机信息,2008,24(30):78-79. 被引量:3
  • 4Ertoz L, Eilertson E. The MINDS-Minnesota Intrusion Detection System, Next Generation Data Mining~M3. Cambridge: Massachusetts (USA):MIT Press, 2004.
  • 5Varun Chandola, Eric Eilertson, Levent Ertoz et al. Data Mining for Cyber Security, Data Warehousing and Data Mining Techniques for Computer Security IMP. NJ: Springer-Verlag, 2006.
  • 6Agrawal R, Imielinski T, Swami A. Mining Association Rules between Sets of Items in Large Database[C]//In Proceedings of the ACM SIGMOD Conference on Management of Data, Washington:D. C. , ACM Press, 1993:207-16.
  • 7Han J, Kamber M. DataMining: Concepts and Techniques[M].北京:高等教育出版社,2007.

二级参考文献5

  • 1陈秀真,郑庆华,管晓宏,林晨光.层次化网络安全威胁态势量化评估方法[J].软件学报,2006,17(4):885-897. 被引量:342
  • 2Park S-T, Khrabrov A. Pennock D.M. et al. Static and Dynamic Analysis of the Internet's Susceptibility to Faults and Attacks[C]. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2003). 2003, 3: 2144- 2154.
  • 3Lakkaraju, K., Yurcik, W., and Lee. NVisionIP: Netflow visualizations of system state for security situational awareness [C]. In Proceedings of the 2004 ACM Workshop on Visualization and Data Mining For Computer Security. 2004, 65-72.
  • 4Yegneswaran V,Barford P, Paxson V. Using Honeynets for Internet Situational Awareness [EB/OL]. [2006-01-09]. http://www.cs. wisc.edu/-pb/hotnets04_final.pdf.
  • 5吕洪柱,张光妲,邓文新.基于数据挖掘的网络安全技术研究[J].微计算机信息,2008,24(15):95-97. 被引量:6

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部