期刊文献+

面向医学的本体学习方法

Ontology Learning Method for Medical Science
下载PDF
导出
摘要 现有的大多数本体都是通过手工构建的。本体的构建是一项费时费力的过程,特别在医学领域更是如此。对此,提出了基于中文分词和文本挖掘技术的自动领域本体构建方法,该方法能大大提高本体构建的效率,保证本体的构建质量。 Most of the existing ontologies are constructed by hand.Ontology construction is a time-consuming and resource-consuming process,especially in medical field.This paper presents the automatic domain ontology construction method based on Chinese word segmenting and text mining technologies,which can greatly improve the efficiency of ontology construction and ensure the quality of it.
出处 《计算机时代》 2010年第10期44-46,共3页 Computer Era
关键词 医学 本体 本体学习 文本挖掘 medical science ontology ontology learning text mining
  • 相关文献

参考文献6

  • 1Gruber TR. A translation approach to portable ontology specifications[J].Knowledge System Laboratory,1993.5(2):199-220.
  • 2Lenat DB.CYC:a large-scale investment in knowledge infrastructure[J].Communications of the ACM,1995.38(11):33-38.
  • 3Snasel V,Moravec P,Pokorny J.WordNet ontology based model for Web retrieval[J].IEEE,2005:220-225.
  • 4Maedche A,Staab S.Ontology learning for the semantic Web[J]. IEEE Intelligent Systems,2001.16(2):72-79.
  • 5杜小勇,李曼,王珊.本体学习研究综述[J].软件学报,2006,17(9):1837-1847. 被引量:242
  • 6张莉,姜浩.领域本体半自动化建模工具的设计与实现[J].计算机与数字工程,2009,37(9):35-38. 被引量:5

二级参考文献12

  • 1杜波,田怀凤,王立,陆汝占.基于多策略的专业领域术语抽取器的设计[J].计算机工程,2005,31(14):159-160. 被引量:26
  • 2郑家恒,卢娇丽.关键词抽取方法的研究[J].计算机工程,2005,31(18):194-196. 被引量:41
  • 3T. Gruber. A translation approach to portable ontology specifications[J]. Knowledge Acquisition,1993,5(2):199-220.
  • 4N. Nakaya, M. Kurematsu, T. Yamaguchi. A Domain Ontology Development Environment Using a MRD and Text corpus[C]. Fifth Joint Conference on Knowledgebased Software Engineering. Frontiers in Artificial Intelligence and Applications. IOS press, 2002,80 : 242- 251.
  • 5Jian Zhang, Jianfen Gao, Ming Zhou. Extraction of Chinese Corapound Words-An Experiraental Study on a Very Large Corpus [C]. The second Chinese Language Processing Workshop attached to ACL2000. Hong Kong,2000,10.
  • 6Lee-Feng Chien. PAT-tree-based adaptive key-phrase extraction for intelligent Chinese information retrieval[J]. Informarion Process and Management. Elsevier Press,1988.
  • 7A. Maedche, V. Pekar, S. Staab. Ontology Learning Part One-On Diseoverying Taxonomic Relations from Web[J]. In Web Intelligence. Springer,2002.
  • 8A. Maedche, S. Staab. Discovering conceptual relations from text[C]. In ECAI-Z000-Eumpean Conference on Artificial Intelligence. Proceedings of the 13^th European Conference on Artificial Intelligence. IOS Press. Amsterdam, 2000 : 321-324.
  • 9Generalized Suffix Trees[EB/OL]. http://www. msci. memphis, edu-giri/eompbio/f00/Wally/Wally, html.
  • 10Robert C, Berwick, Steven P. Abney, and Carol Tenny. Principle-Based Parsing: Computation and Psycholinguistics [Z]. Kluwer Academic Publishers, Boston, 1991:257-278.

共引文献243

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部