期刊文献+

基于改进最大间距准则和支持向量机的人脸识别 被引量:1

Face Recognition Based on Improved Maximum Margin Criterion and Support Vector Machine
下载PDF
导出
摘要 将基于最大间距准则的人脸特征提取方法进行改进,以提高人脸识别率。通过在类间散度矩阵中增加距离调节函数,经选择得到最佳鉴别矢量,用支持向量机的多分类算法对改进准则所提取的特征进行识别。在ORL人脸数据库上的试验结果表明,改进算法对人脸光照和姿态变化具有较强的鲁棒性,较传统算法在特征提取方面更加有效。 In order to increase face recognition rate,improves the facial feature extraction method of maximum margin criterion.Through increasing the distance tuning function into the between-class scatter matrix,selects the optimal discriminant vectors.Uses support vector machine multi-classification algorithm to identiy the extracted features of the improved methods.The experiment result on ORL face database shows that the improved method is robust to illumination and pose,and it is better than the traditional method in terms of efficiency about feature extraction.
出处 《现代计算机》 2010年第9期51-54,共4页 Modern Computer
关键词 人脸识别 最大间距准则 支持向量机 Face Recognition Maximum Margin Criterion Support Vector Machine
  • 相关文献

参考文献8

  • 1Belhumeur P N,Hespanha J P,Kriegman D J.Eigenfaces VS Fisherfaces:Recognition Using Class Specific Linear Projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 2Li H F,Jiang T,Zhang K S.Efficient and Robsut Feature Extraction by Maximum Margin Criterion[J].IEEE Transactions on Neural Networks,2006,17(1):157-165.
  • 3Olivetti Institute.ORL Facedatabase[DB/OL].http://www.uk.research.att.con/facedatabase.html.
  • 4Turk M,Pentland.An Eigenfaces for Recogniton[J].Journal of Cognitive Neuroscience,1991,3(1):71-86.
  • 5张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2272
  • 6何国辉,甘俊英.基于核主元分析和支持向量机的人脸识别[J].计算机工程与设计,2005,26(5):1190-1193. 被引量:8
  • 7程国,丁正生.基于特征脸加权组合的人脸识别[J].商洛学院学报,2009,23(4):40-43. 被引量:2
  • 8Chih Wei Hsu,Chih Jen Lin.A Comparison of Methods for Muhiclass Support Vector Machine[J].IEEE Transactions on Neural Networks,2002,13(2):415-425.

二级参考文献21

  • 1徐春明,乐晓蓉,王正群.一种基于核主成分特征组合的人脸识别方法[J].计算机工程与应用,2006,42(3):76-78. 被引量:7
  • 2Maxim A,Grudin.On internal representations in face recogn ition systems[J].Pattern Recognition,2000,33(8):1161-1177.
  • 3Pentland A. Looking at people:sensing for ubiquitous and wearable computing [J].IEEE Trans Pattern A nol Machine Intel,2000,22(1): 107-119.
  • 4Pentland A, Mohandas B,Stamer T.View-based and monoc ular eigenspaces for face recongnition[C].IEEE Confon Computer Vision and Pattern Recongnition, 1994:84-91.
  • 5Turk M, Pentland A.Eigenface for Recognition[J].CogNeuro sis,1991,23(3):71-86.
  • 6WangL,TanT KExperimentsresultsoffacedescription based on the 2nd-order eigenfaces method[S].ISO/MPEG 6001, Geneva,2000-05.
  • 7Wang LTan T KA new proposal for face feature description [S].ISO/MPEG 6001,Noordwi kerhout,2000-05.
  • 8Olivetti insfitute.ORL facedatabase [DB/OL].1994-09-01 (2009-03-14)http://www.uk.researeh.att.con/facedatabas e.html.
  • 9Sun T, Neuvo Y.Detail-preserving median based fdters in image processing [J].Pattern Recognition, 1994,15:341-347.
  • 10Bernhard Schokopf, Alexander Smola, Klaus Robert Muller.Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10:1299-1319.

共引文献2279

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部