摘要
Navier-Stokes方程描述了具有小速度梯度的不可压缩粘性流体运动规律,在流体动力学研究中有着重要的应用。1966年,Ladyzhenskaya O.A.放弃了速度梯度很小的限制,提出了几种描述不可压缩粘性流体运动规律的修正Navier-Stokes方程。为估计整个三维空间上一类修正Navier-Stokes方程解衰减速率的上下界,使用改进的Fourier分解方法得到当初值u0∈Lp(1≤p<2)时,解的L2模衰减速率上界为(t+1)-3/2(1/p-1/2);对某些初值u0∈Lp(1≤p<97)时,解的L2模衰减速率下界为34(t+1)-3/4。
The Navier-Stokes equations have many important application in fluid dynamic,which describe motion characteristics of viscous incompressible fluids for small gradients of the velocities.In 1966,Ladyzhenskaya O.A.suggested several variants of modified Navier-Stokes equations to a determinate description of the nonstationary flows of viscous incompressible fluids for large gradients of the velocities.For estimating upper and lower bounds of decay rates for a modified Navier-Stokes equations in the whole three-dimensional space,by improving the Fourier splitting methods,the paper proves that upper bounds of decay rates of L2 norm to the solution are (t+1)-3/2(1/p-1/2) for initial value u0 ∈Lp(1 ≤ p 2) and lower bounds of ones are34(t + 1)?for some initial value 0u ∈Lp(1 ≤ p 97).-3/4
出处
《上海第二工业大学学报》
2010年第3期173-177,共5页
Journal of Shanghai Polytechnic University
基金
上海市自然科学基金(No.09ZR1412800)
上海市教育委员会科研创新项目基金(No.10ZZ131)