期刊文献+

动态环境下的种群扩散粒子群优化算法 被引量:3

Population Diffuse PSO Algorithm in Dynamic Environment
下载PDF
导出
摘要 传统的粒子群优化算法在优化过程中难以有效地监测环境的动态变化和响应。针对上述问题,通过增加外围监测粒子加强监测有效性,提出一种可以动态响应环境变化的种群多样性扩散函数,在此基础上设计一种扩散粒子群优化算法(DPSO),在动态环境中与APSO、CPSO进行比较,实验结果表明,DPSO可以更有效地跟踪动态环境下极值的变化并快速收敛。 It is difficult for PSO to detect dynamic change of environment and response in optimizing process.Aiming at the problems,by adding particles which are on the periphery for detecting the change of environment,this paper proposes a new diffuse population function to respond change,and designs an algorithm named Diffuse Particle Swarm Optimization(DPSO).Comparison with APSO and CPSO,it can detect changes of environment more effectively and track with optimum solution faster.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第19期24-26,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60773041) 江苏省自然科学基金资助项目(BK2008451) 安徽师范大学校青年基金资助项目(2008xqn48)
关键词 粒子群优化算法 多样性 动态环境 扩散 PSO algorithm diversity dynamic environment diffuse
  • 相关文献

参考文献6

  • 1Hu Xiaohui, Eberhart R C. Adaptive Particle Swarm Optimization: Detection and Response to Dynamic Systems[C]//Proc. of 2001 Congress on Evolutionary Computation. Seoul, Korea: [s. n.], 2001.
  • 2Carlisle A, Dozier G Tracking Changing Extrema with Adaptive Particle Swarm Optimizer[C]//Proc. of WAC'02. Orlando, Florida, USA: [s. n.], 2002.
  • 3Blackwell T, Branke J. Multi-swarm, Exclusion, and Anticonvergence in Dynamic Environments[J]. IEEE Trans. on Evolutionary Computation, 2006, 10(4): 459-472.
  • 4焦巍,刘光斌.一种新的双子群PSO算法[J].计算机工程,2009,35(16):173-174. 被引量:4
  • 5Yang Shengxiang. Non-stationary Problem Optimization Using the Primal-dual Genetic Algorithm[C]//Proc. of 2003 Congress on Evolutionary Computation. Canberra, Australia: [s. n.], 2003.
  • 6de Jong K A. A Test Problem Generator for Non-stationary Environments[C]//Proc. of 1999 Congress on Evolutionary Computation. Washington D. C., USA: [s. n.], 1999.

二级参考文献5

  • 1Kennedy J, Eberhart R. Particle Swarm Optimization[C]//Proc. of ICNN'95. Perth, Western Australia: 1EEE Press, 1995.
  • 2Shi Yuhui, Eberhart R. A Modified Particle Swarm Optimizer[C]// Proc. of the 5th IEEE Conference on Evolutionary Computation. Singapore: IEEE Press, 1998.
  • 3Clerc M. The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization[C]//Proc. of CEC'99. Washington D. C., USA: [s. n.], 1999.
  • 4Chen Guochu, Yu Jinshou. Two Sub-swarms Particle Swarm Optimization Algorithm[J]. Lecture Notes in Computer Science, 2005, 36(12): 515-524.
  • 5Niu Ben, Zhu Yunlong, He Xiaoxian. MCPSO: A Multi-swarm Cooperative Particle Swarm Optimizer[J]. Applied Mathematics and Computation, 2007, 185(2): 1050-1062.

共引文献3

同被引文献37

  • 1单世民,邓贵仕.动态环境下一种改进的自适应微粒群算法[J].系统工程理论与实践,2006,26(3):39-44. 被引量:16
  • 2Torn A,Ali M M,Viitanen S.Stochastic Global Optimization: Problem Classes and Solution Techniques[J].Journal of Global Optimization,1999,14(3): 437-447.
  • 3Kennedy J,Eberhart R C.Particle Swarm Optimization[C]//Proc.of the IEEE Int’l Conf.on Neural Networks.Perth,Australia:[s.n.],1995.
  • 4Birbil S I.Stochastic Global Optimization Techniques[D].Raleigh,North Carolina,USA: North Carolina State University,2002.
  • 5BLACKWELL T M, BENTLEY P J. Dynamic search with charged swarms [C] //Proceedings of the Genetic and Evolutionary Compu- tation Conference 2002. New York: Morgan Kaufmann Publishers, 2002:19 - 26.
  • 6BLACKWELL T M. Particle swarms and population diversity I: anal- ysis [J]. Soft Computing - A Fusion of Foundations, Methodologies and Applications, 2005, 9(11): 793 -802.
  • 7BLACKWELL T M, BENTLEY P J. Multiswarms, exclusion, and anti-convergence in dynamic environments [J]. IEEE Transactions on Evolutionary Computation, 2006, 10(4): 459 - 472.
  • 8BONABEAU E, DORIGO M, THERAULAZ G. Swarm Intelligence: from Natural to Artificial Systems [M]. Oxford: Oxford University Press, 1999.
  • 9BRANKE J. Memory enhanced evolutionary algorithms for chang- ing optimization problems [C] //Proceedings of the 1999 Congress on Evolutionary Computation. Washington, DC: IEEE, 1999(3): 1875 - 1882.
  • 10BRANKE J, KAUBLER T, SCHMIDTH C, et al. A multi-population approach to dynamic optimization problems [C] //Adaptive Comput- ing in Design and Manufacturing. Berlin: Springer-Verlag, 2000:299 - 308.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部