期刊文献+

基于相似性分析的SVM快速分类算法 被引量:3

Fast SVM Classification Algorithm Based on Similarity Analysis
下载PDF
导出
摘要 针对支持向量机(SVM)分类速度取决于支持向量数目的应用瓶颈,提出一种SVM快速分类算法。通过引入支持向量在特征空间的相似性度量,构建特征空间中的最小支撑树,在此基础上将支持向量按相似性最大进行分组,依次在每组中找到决定因子和调整因子,用两者的线性组合拟合一组支持向量在特征空间的加权和,以减少支持向量的数量,提高支持向量机的分类速度。实验结果证明,该方法能以很小的分类精度损失换取较大的分类时间缩减,满足SVM实时分类的要求。 Aiming at the bottleneck of SVM that the speed of classification depends on the number of support vectors,this paper proposes a fast classification algorithm for SVM.In feature space it constructs the minimum spanning by introducing the similarity measure and divides the support vectors into groups according to the maximum similarity.The determinant factor and the adjusting factor are found in each group by some rules.In order to simplify the support vectors,it takes the linear combination of determinant factor and adjusting factor to fit the weighted sums of support vectors in feature space,so that the speed of classification is improved.Experimental results show that the algorithm can get higher reduction rate of classification time by minor loss of classification accuracy and it can satisfy the requirements of real-time classification.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第19期174-176,共3页 Computer Engineering
基金 河北省科技计划基金资助项目"基于人体运动学的客流采集系统的研究"(09213507D)
关键词 支持向量 相似性系数 最小支撑树 决定因子 调整因子 support vector similarity coefficient minimum sp .arming tree determinant factor adjusting factor
  • 相关文献

参考文献6

二级参考文献10

共引文献42

同被引文献26

  • 1钱权,耿焕同,王煦法.基于SVM的入侵检测系统[J].计算机工程,2006,32(9):136-138. 被引量:14
  • 2Ayat N E, Cheriet M, Remaki L, et al. KOMD A New Support Vector Machines Kernel with Moderate Decreasing for Pattern Recognition, Application to Digit Image Recognition[C]//Proc. of the 6th International Conference on Document Analysis and Recognition. Seattle, USA: IEEE Press, 2001.
  • 3Liang Nanying,Huang Guangbin,Saratchandran P,et al.A Fastand Accurate Online Sequential Learning Algorithm forFeedforward Networks[J].IEEE Transactions on Neural Networks,2006,17(6):1411-1423.
  • 4Huang Guangbin,Zhu Qinyu,Siew C K.Extreme LearningMachine:Theory and Applications[J].Neurocomputing,2006,70(1):489-501.
  • 5Rong Haijun,Huang Guangbin,Sundararajan N,et al.OnlineSequential Fuzzy Extreme Learning Machine for FunctionApproximation and Classification Problems[J].IEEE Transactionson Neural Networks,2009,39(4):1067-1072.
  • 6Cheng Guojian,Cai Lei,Pan Huaxian.Comparison of ExtremeLearning Machine with Support Vector Regression for ReservoirPermeability Prediction[C]//Proc.of International Conference onComputational Intelligence and Security.[S.1.]:IEEE Press,2009:173-176.
  • 7Zhang Qizhi,Zhou Yali.Active Noise Control Using a Feed-forward Network with Online Sequential Extreme LearningMachine[C]//Proc.of International Symposium on NeuralNetworks.[S.1.]:IEEE Press,2008:410-416.
  • 8Lan Yuan,Yeng C S,Huang Guangbin.Ensemble of Online Sequential Extreme Learning Machine[J].Neurocomputing,2009,72(1):3391-3395.
  • 9Bartlett P L.The Sample Complexity of Pattern Classification withNeural Networks:The Size of the Weights is More Important Thanthe Size of the Network[J].IEEE Transactions on InformationTheory,1998,44(2):525-536.
  • 10Tang Xiaoliang,Han Min.Partial Lanczos Extreme LearningMachine for Single-output Regression Problems[J].Neurocom-puting,2009,72(2),3066-3076.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部