期刊文献+

KSVDD及其在拒识判别中的应用 被引量:2

KSVDD and Its Application in Rejection Determination
下载PDF
导出
摘要 为提高支持向量域分类器(SVDC)的分类精度和鲁棒性,提出基于K近邻(KNN)和支持向量域描述(SVDD)的分类器KNN-SVDD(KSVDD)。该分类器对单类内部的样本采用SVDD的判别准则,对类交叉区域及描述边界外的样本采用KNN的判别准则。通过拒绝描述边界外的样本,KSVDD可应用于拒识判别。UCI数据集上的数值实验表明,KSVDD分类精度与支持向量机(SVM)相当且均比SVDC高,训练时间比SVM短,鲁棒性强,在拒识判别中有良好表现。 To improve the accuracy and robustness of Support Vector Domain Classifier(SVDC),KSVDD is proposed based on K-Nearest Neighbor(KNN) and Support Vector Domain Description(SVDD).The classifier takes SVDD determination for test samples inside single class,and adopts the KNN rule for test samples inside the overlapped regions or outside the description boundaries.By rejecting samples outside the description boundaries,the classifier can also be generalized to rejection determination.Numerical experiments on UCI data show that KSVDD has higher accuracy over SVDC,is comparable with SVM,has lower training time than SVM,is more robust and has good performances in rejection determination.
作者 徐引玲
出处 《计算机工程》 CAS CSCD 北大核心 2010年第19期195-197,共3页 Computer Engineering
基金 西安统计研究院基金资助重点项目(09JD07)
关键词 支持向量域分类器 K近邻 支持向量域描述 拒识判别 鲁棒性 Support Vector Domain Classifier(SVDC) K-Nearest Neighbor(KNN) Support Vector Domain Description(SVDD) rejection determination robustness
  • 相关文献

参考文献6

二级参考文献24

  • 1陆从德,张太镒,胡金燕.基于乘性规则的支持向量域分类器[J].计算机学报,2004,27(5):690-694. 被引量:21
  • 2雷静,阮晓钢.DNA序列与剪接位点的关联性分析[J].北京工业大学学报,2004,30(3):295-298. 被引量:1
  • 3李冬冬,王正志,杜耀华,晏春.DNA序列中模式发现的一种快速算法[J].生物物理学报,2005,21(2):121-129. 被引量:3
  • 4Yang Zhengrong. Decision Trees: a Novel Method for Decisive Template Selection-mining SARS-CoV Protease Cleavage Data Using Non-orthogonal[J]. Bioinformatics, 2005, 21: 2644-2650.
  • 5Maisheng Y, Jason T L W. Algorithms for Splicing Junction Donor Recognition in Genomic DNA Sequences[C]//Proc. of IEEE International Joint Symposia on Intelligence and Systems. [S. l.]: IEEE Computer Society, 1998:169-176.
  • 6Salvatore R. HS3D, a Dataset of Homo Sapiens Splice Regions, and Its Extraction Procedure from a Major Public Database[J]. International Journal of Modern Physics C, 2002, 13(8): 1105-1117.
  • 7Wren J D, William H H, Chandrasekaran S, et al. Markov Model Recognition and Classification of DNA/Protein Sequence Within LargeText Databases[J]. Bionformatics, 2005, 21(21): 4046- 4053.
  • 8Vapnik. The Nature of Statistical Learning Theory[M].New York,NY:Wiley, 1998. chapter 5.
  • 9David M J Tax, Robert P W Duin. Support vector data description[J].Machine Learning, 2004,54:45 - 66.
  • 10Chao Yuan, David Casasent. A novel support vector classifier with better rejection performance[A] .Proceeding of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C]. Madison,WI, United States: Institute of Electrical and Electronics Engineers Computer Society, 2003.1063 - 1069.

共引文献23

同被引文献8

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部