摘要
The method of complete polar decomposition for arbitrary Mueller matrixes is introduced to analyze the birefringence vector induced in a fiber, and then based on the Mueller matrix (MM) method, three kinds of computation methods including the absolute, the relative, and the differential rotation methods are proposed and investigated in detail. A computer-controlled measure system is employed to measure the Mueller matrix and birefringence vector for a 2.5-km fiber system with length 5 mm under lateral press in complicated environment with much perturbation. Experimental results show that the differential rotation (DR) method is the optimal approach to achieve fiber birefringence vectors in a large dynamic range of lateral press on fibers in perturbed situations, which reaches the highest linearity of 0.9998 and average deviation below 2.5%. Further analyses demonstrate that the DR method is also available for accurate orientation of lateral press direction and the average deviation is about 1.1°.
The method of complete polar decomposition for arbitrary Mueller matrixes is introduced to analyze the birefringence vector induced in a fiber, and then based on the Mueller matrix (MM) method, three kinds of computation methods including the absolute, the relative, and the differential rotation methods are proposed and investigated in detail. A computer-controlled measure system is employed to measure the Mueller matrix and birefringence vector for a 2.5-km fiber system with length 5 mm under lateral press in complicated environment with much perturbation. Experimental results show that the differential rotation (DR) method is the optimal approach to achieve fiber birefringence vectors in a large dynamic range of lateral press on fibers in perturbed situations, which reaches the highest linearity of 0.9998 and average deviation below 2.5%. Further analyses demonstrate that the DR method is also available for accurate orientation of lateral press direction and the average deviation is about 1.1°.
基金
Supported by the National Natural Science Foundation of China under Grant Nos 60907027 and 60877057, and the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) in China (No 20090009120035).