摘要
The blend of nickel phthalocyanine (NiPc) (2 wt. %) poly-N-epoxypropylcarbazole (PEPC), (1 wt. %) and carbon nano-tube (CNT) powder (2 wt. %) in benzole is deposited by drop-casting on glass substrates with pre-deposited metallic electrodes to fabricate Ag/CNT/NiPc/PEPC/A1 surface type cell. It is assumed that the high nonlinearity of the I — V characteristics is related to deep traps in the nano-scale depletion region in NiPc that is observed experimentally. The values of ideality factor and barrier height are determined from the I — V curve and they are found to be 8.4 and 1.05eV, respectively. The values of mobility and conductivity are calculated to be 7.94 × 10?8 cm/Vs and 3.5 × 10?6 Ω?1 cm?1. The values of ideality factor and series resistance are also calculated by using Cheung's functions, which are in good agreement with the values calculated from the I — V curve.
The blend of nickel phthalocyanine (NiPc) (2 wt. %) poly-N-epoxypropylcarbazole (PEPC), (1 wt. %) and carbon nano-tube (CNT) powder (2 wt. %) in benzole is deposited by drop-casting on glass substrates with pre-deposited metallic electrodes to fabricate Ag/CNT/NiPc/PEPC/A1 surface type cell. It is assumed that the high nonlinearity of the I — V characteristics is related to deep traps in the nano-scale depletion region in NiPc that is observed experimentally. The values of ideality factor and barrier height are determined from the I — V curve and they are found to be 8.4 and 1.05eV, respectively. The values of mobility and conductivity are calculated to be 7.94 × 10?8 cm/Vs and 3.5 × 10?6 Ω?1 cm?1. The values of ideality factor and series resistance are also calculated by using Cheung's functions, which are in good agreement with the values calculated from the I — V curve.