期刊文献+

关于弱s-可补子群的几个定理

Some Theorems on Weakly s-supplemented Subgroups
下载PDF
导出
摘要 称群G的一个子群H在G中是弱s-可补的,如果存在G的一个子群K,使得G=HK且H∩K≤HsG,其中HsG是包含在H中的G的最大的s-置换子群.利用弱s-可补子群研究有限群的结构,推广了前人的一些结果. A subgroup H of a group G is said to be weakly s-supplemented in G if there exists a subgroup K of G such that G=HK and H∩K≤HsG,Where HsG is the maximal s-permutable subgroup of G contained in H.We investigate the structure of finite groups by using weakly s-supplemented subgroups.Some recent results are generalized.
作者 李长稳 於遒
出处 《山西师范大学学报(自然科学版)》 2010年第3期1-4,共4页 Journal of Shanxi Normal University(Natural Science Edition)
基金 国家自然科学资金项目(10771180) 徐州师范大学科研基金资助项目(09XLB01)
关键词 弱s-可补子群 P-幂零 2-极大子群 weakly s-supplemented subgroup p-nilpotent 2-maximal subgroup
  • 相关文献

参考文献13

  • 1Hall P.A characteristic property of soluble groups[J].J London Math Soc,1937,12:188-200.
  • 2Wang Yanming.Finite group with some subgroups of sylow subgroups c-supplemented[J].J Algebra,2000,224:467-478.
  • 3Skiba N.On weakly s-permutable subgroups of finite groups[J].J Algebra,2007,315:192-209.
  • 4Huang Yujian,Li Yangming.On weakly s-supplemented subgroups of finite groups[J].Southeast Asian Bulletin of Mathematics,2009,33:443-450.
  • 5Guo Xiuyun,Shum K P.Gover-avoidance properties and structure of finite groups[J].J Pure and Applied Algebra,2003,181:297-308.
  • 6黄裕建,李样明.p-冪零群的一个等价条件[J].中山大学学报(自然科学版),2008,47(5):14-17. 被引量:2
  • 7Guo Wenbin.The thoery of classes of groups[M].Beijing:Science Press-Kluwer Academic Publishers,2000.1-70.
  • 8Li Deyu,Guo Xiuyun.The influence of c-Normality of subgroups on the structure of finite groups[J].J Pure and Applied Algebra,2000,150:53-60.
  • 9Li Yangming,Wang Yanming,Wei Huaqun.The influence of π-quasinormality of some subgroups of a finite group[J].Arch Math,2003,81:245-252.
  • 10刘晓蕾,王燕鸣.有限群的p-幂零性的一个注记[J].吉林大学学报(理学版),2009,47(3):523-526. 被引量:3

二级参考文献31

  • 1Kegel O H.Sylow-gruppen und Subnormalteiler Endlicher Gruppen[J].Math Z,1962,78:205-221.
  • 2WANG Yan-ming.c-Normality of Groups and Its Properties[J].J Algebra,1996,180(3):954-965.
  • 3WANG Yan-ming.Finite Groups with Some Subgroups of Sylow Subgroups c-Supplemented[J].J Algebra,2000,224(2):467-478.
  • 4Robinson D J S.A Course in the Theory of Groups[M].New York:Springer-Verlag,1993.
  • 5Deskins W E.On Quasinormal Subgroups of Finite Groups[J].Math Z,1963,82(2):125-132.
  • 6Maier R,Schmidt P.The Embedding of Quasinormal Subgroups in Finite Groups[J].Math Z,1973,131(3):269-272.
  • 7Carocca A,Maier R.Hypercentral Embedding and Pronormality[J].Arch Math,1998,71(6):433-436.
  • 8Huppert B.Endliche Gruppen[M].Berlin:Springer-Verlag,1967.
  • 9Guralnick R M.Subgroups of Prime Power Index in a Simple Group[J].J Algebra,1983,81(2):304-311.
  • 10Gross F.Conjugacy of Odd Order Hall Subgroups[J].Bull London Math Soc,1987,19(4):311-319.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部