摘要
利用s-正规子群与正规指数的概念给出群为可解群的一些条件.主要定理有:(1)设M是群G的可解的极大子群,M在G中s-正规的充要条件是η(G∶M)=|G∶M|;(2)有限群G可解当且仅当对于M∈F1(G)={M<.G|η(G∶M)≠|G∶M|},M在G中s-正规.(3)设N是G的正规子群,N可解的充要条件是对于任意不包含N的c-极大子群M,有η(G∶M)=|G∶M|.
In this paper,we use s-normal subgroups and normal index to discuss the solvability of a finite group and obtain some new conditions.Main results are(1)M is a solvable maximal subgroup of G,M is s-normal in G if and only if η(G∶ M)=|G∶ M|;(2)let G be a finite group,denote F1(G)={M·G|η(G∶ M)≠|G∶ M|},G is solvable if and only if M belong to F1(G) and M is s-normal in G;(3)let G be a finite group,N is a normal subgroup of G.Then N is solvable if and only if every c-maximal subgroups of G not containing N is η(G∶ M)=|G∶ M| in G.
出处
《山西师范大学学报(自然科学版)》
2010年第3期5-8,共4页
Journal of Shanxi Normal University(Natural Science Edition)
基金
大连水产学院科研项目SY2007042
关键词
极大子群
S-正规子群
正规指数
可解群
maximal subgroups
s-normal subgroups
normal index
solvable groups