期刊文献+

关于s-正规子群与正规指数

On s-normal Subgroups and Normal Index
下载PDF
导出
摘要 利用s-正规子群与正规指数的概念给出群为可解群的一些条件.主要定理有:(1)设M是群G的可解的极大子群,M在G中s-正规的充要条件是η(G∶M)=|G∶M|;(2)有限群G可解当且仅当对于M∈F1(G)={M<.G|η(G∶M)≠|G∶M|},M在G中s-正规.(3)设N是G的正规子群,N可解的充要条件是对于任意不包含N的c-极大子群M,有η(G∶M)=|G∶M|. In this paper,we use s-normal subgroups and normal index to discuss the solvability of a finite group and obtain some new conditions.Main results are(1)M is a solvable maximal subgroup of G,M is s-normal in G if and only if η(G∶ M)=|G∶ M|;(2)let G be a finite group,denote F1(G)={M·G|η(G∶ M)≠|G∶ M|},G is solvable if and only if M belong to F1(G) and M is s-normal in G;(3)let G be a finite group,N is a normal subgroup of G.Then N is solvable if and only if every c-maximal subgroups of G not containing N is η(G∶ M)=|G∶ M| in G.
作者 高辉 高胜哲
出处 《山西师范大学学报(自然科学版)》 2010年第3期5-8,共4页 Journal of Shanxi Normal University(Natural Science Edition)
基金 大连水产学院科研项目SY2007042
关键词 极大子群 S-正规子群 正规指数 可解群 maximal subgroups s-normal subgroups normal index solvable groups
  • 相关文献

参考文献8

  • 1Deskins W E.On maximal subgroups[J].Proc Symp Pure Math,1959,1:100-104.
  • 2Beidleman J C,Spencer A E.The normal index of maximal subgroups in finite groups[J].Illinois J Math,1972,16:95-101.
  • 3郭秀云.有限群极大子群的正规指数[J].数学学报(中文版),1991,34(2):208-212. 被引量:12
  • 4Wang Yanming.c-normality of groups and its properties[J].J of Algebra,1996,180:954-965.
  • 5Zhang Xinjian,Guo Wenbin,Shum K P.s-normal subgroups of finite groups[J].J Applied Algebra and Discrete Structures,2003,1(2):99-108.
  • 6Bhattacharya P,Mukherhjee N P.On the intersection of a class of maximal subgroups of a finite groupie[J].J Pure and Appl Algebra,1986,42:117-124.
  • 7Doerk K,Hawkes T O.Finite soluble groups[M].Berlin:Walter de Guryter,1992:47-52.
  • 8骆公志.弱c正规子群对有限群构造的影响[J].山西师范大学学报(自然科学版),2004,18(2):17-19. 被引量:6

二级参考文献3

  • 1[1]Wang Yan-ming. c-normality of groups and its properties[ J]. J. Algebra, 1996,180:954 ~ 965.
  • 2[2]Zhu Lu-jin., Guo Wen-bin, Shum K P. Weakly c-normal subgroups of finite groups and their properties [ J ]. Comm. Algebra ,2002,30( 11 ) :5505 ~ 5512.
  • 3[3]Guo Wen-bin. The Theory of Class of Groups[ M]. Beijing:Science Press,2000.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部