期刊文献+

具有分布时滞的SIQS传染病模型的分析 被引量:2

Global Stability and Permanence of SIQS Epidemic Model with Distributed Time Delay
下载PDF
导出
摘要 本文介绍了一类含有分布时滞的SIQS传染病模型,求解模型的无病平衡点和地方病平衡点,得到了基本再生数R0,它决定了疾病的灭绝与持久.当R0>1时,疾病是持久的,通过三个命题来说明系统的持久性.命题证明系统在初始条件下的任何解都是正的,而且得到N(t),S(t),I(t)的边界值,从而证明了系统的持久性. In this paper we present a class of SIQS epidemic model with distributed time delay,solving the model disease-free equilibrium and endemic equilibrium.The basic reproductive number R0 is obtained which determines whether the disease is extinct or not.When the basic reproductive number R0 is greater than 1,it is proved that the disease is permanent in the population.Through the three propositions,we prove that the system is permanent.Propositional prove system′s any solution are positive under the initial conditions.We get the boundary values about N(t),S(t),I(t) to prove the system is permanent.
出处 《山西师范大学学报(自然科学版)》 2010年第3期18-22,共5页 Journal of Shanxi Normal University(Natural Science Edition)
关键词 分布时滞 SIQS传染病模型 持久性 distributed time delay SIQS epidemic model permanence
  • 相关文献

参考文献8

二级参考文献13

  • 1原三领,马知恩,韩茂安.一类含时滞SIS流行病模型的全局稳定性[J].数学物理学报(A辑),2005,25(3):349-356. 被引量:13
  • 2Hethcote H W. Qualitative analyses of communicable disease models [ J ]. Math Biosci, 1976,28 (3) : 335 - 356.
  • 3Hethcote H W, Gao L Q. Disease transmission models with density -dependent demographics [ J]. J Math Biol, 1992,30(6) :717 -731.
  • 4Feng Z, Thieme H R. Recurrent outbreaks of childhood disease revisited: The impact of isolation [J]. Math Biosci, 1995,128(2) : 93 - 130.
  • 5Feng Z, Thieme H R Endemic with arbitrarily distributed periods of infection, I : General theory [ J ]. SlAM J Appl Math,2000,61(7) : 803 -833.
  • 6Feng Z, Thieme H R. Endemic models with arbitrarily distributed periods of infection, Ⅱ : Fast disease dynamics and permanent recovery [J]. SIAM J Appl Math, 2000,61(8) :983 -1012.
  • 7Lasalle J P. The stability of dynamical systems. Regional conference series Applied Mathematics [ M]. SIAM: Philadelphia,1976.
  • 8Hethcote H W. The mathematics of infectious disease [J]. SIAM Review. 2000;42:599-653.
  • 9Feng Z, Thieme H R. Recurrent outbreaks of childhood disease revisited. The impact of isolation[J]. Math Biosci, 1995;128:93-130.
  • 10Wu L I, Feng Z. Homoclinic bifurcation in an SIQR model for childhood disease [J]. J Differential Equations,2000;168:150-167.

共引文献50

同被引文献21

  • 1徐文雄,张太雷.具有隔离仓室流行病传播数学模型的全局稳定性[J].西安交通大学学报,2005,39(2):210-213. 被引量:15
  • 2CAI L M, LI X Z. Analysis of a SEIV epidemic model with a nonlinear incidence rate [ J ]. Applied Mathematical Modelling, 2009, 33 (7) : 2919 - 2926.
  • 3HU Z X, HUANG X F, MAW B. Stability analysis for a delayed SIRS epidemic model with vaccination and nonlinear incidence rate[ C]. Pro- ceedings of the 5th International Congress on Mathematical Biology, Nanjing: World Scientific. 2011,6:90 -93.
  • 4XU R, MA Z E, WANG Z P. Global stability of a delayed SIR epidemic model with saturation incidence and temporary immunity[ Jl. Computers & Mathematics with Applications, 2010, 59 (9) : 3211 -3221.
  • 5XU R. Global dynamics of an SEIRI epidemiological model with time delay[ J ] Applied Mathematics and Computation, 2014, 232:436 -444.
  • 6ZHANG J, MA Z. Global dynamics of an SEIR epidemic model with saturating contact rate [ J 1. Mathematical Biosciences, 2003, 185 ( 1 ) : 15 - 32.
  • 7LIU Z J. Dynamics of positive solutions to SIR and SEIR epidemic models with saturated incidence rates[ J]. Nonlinear Analysis : Real World Ap- plications, 2013, 14(3): 1286-1299.
  • 8LAHROUZ A, OMARI L. Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence [ J ]. Statistics and Probability Letters, 2013, 83 (4): 960-968.
  • 9XU Rui,MA Zhien,WANG Zhiping.Global stability of a delayed SIR epidemic model with saturation incidence and temporary immunity[J].Computers&Mathematics with Applications,2010,59(1):3211-3221.
  • 10HU Zhixing,HUANG Xiaofan,MA Wanbiao.Stability analysis for a delayed SIRS epidemic model with vaccination and nonlinear incidence rate[C]//Proceedings of the 5th International Congress on Mathematical Biology,2011.6:90-93.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部