期刊文献+

笼形硅氧烷储氢性能研究 被引量:1

Computational study of hydrogen storage properties in polyhedral silsesquioxane complexes
下载PDF
导出
摘要 利用密度泛函理论,通过对笼形硅氧烷—有机金属复合物材料的储氢性能研究,发现这种复合材料在吸附氢分子前后几何结构基本保持不变,有很好的结构稳定性.通过电子结构计算发现,有机金属复合物在嫁接到硅氧烷分子上前后所能吸附的最大氢分子数目保持不变,都受到相同的18电子规则约束,即TiCmHm-1H3Si4O6(m=5,6)最多都只能吸附4个氢分子.这一发现对在有机金属复合物储氢中经常出现的金属团簇问题的解决有一定的指导意义,同时这种材料可以作为一种新型的储氢材料. Using density functional theory,this paper investigates the adsorption of hydrogen on a novel structure of Ti containing organometallic complexes grafted on polyhedral silsesquioxane.The complexes have good structural stability,and their geometries are essentially unchanged before and after the adsorption of hydrogen molecule.Through electronic structure calculation,it is found that the maximum number of hydrogen molecules adsorbed to ganometallic complex before and after grafting to the polyhedral silsesquioxane molecules remains the same.The maximum number of hydrogen molecules adsorbed is still determined by 18 electron rule,that is to say all 4 hydrogen molecules for TiC5H4H3Si4O6 and TiC6H5H3Si4O6.These findings have some guidance to solve the problem of transition metal clustering and these materials may be used as a new type of hydrogen storage material.
出处 《西南民族大学学报(自然科学版)》 CAS 2010年第5期818-821,共4页 Journal of Southwest Minzu University(Natural Science Edition)
基金 国家自然科学基金资助课题(NSAF10976019)
关键词 笼形硅氧烷 嫁接结构 密度泛函理论 氢储存 吸附 polyhedral silsequioxane grafted structure density functional calculation hydrogen storage adsorption
  • 相关文献

参考文献2

二级参考文献104

  • 1许炜,陶占良,陈军.储氢研究进展[J].化学进展,2006,18(2):200-210. 被引量:87
  • 2Vajo J J, Skeith S L, Mertens F. Reversible Storage of Hydrogen in Destabilized LiBH4 [ J]. J Phys Chem B, 2005, 109: 3 719 -3 722.
  • 3Wagemans R W P, Van Lenthe J H, De Jongh P E. Hydrogen Storage in Magnesium Clusters: Quantum Chemical study[ J]. J Am Chem Soc, 2005, 127:16 675 - 16 680.
  • 4Vajo J J, Olson G L. Hydrogen Storage in Destabilized Chemical Systems[ J]. Scr Mater, 2007, 56 : 829 - 834.
  • 5Nakamori Y, Miwa K, Ninomiya A, et al. Correlation between Thermodynamical Stabilities of Metal Borohydrides and Cation Electronegativities: First-Principles Calculations and Experiments [J]. Phys Rev B. 2006, 74:045 126.
  • 6Nakamori Y, Li H W, Kikuchi K, et al. Thermodynamical Stabilities of Metal-Borohydrides [ J ] . J Alloys Compd, 2007, 446/447 : 296 - 300.
  • 7Yin L C, Wang P, Fang Z Z, Cheng H M. Thermodynamically Tuning LiBH4 by Fluorine Anion Doping for Hydrogen Storage : a Density Functional Study [ J]. Chem Phys Lett, 2008, 450: 318 -321.
  • 8Pena-Alonso R, Sicurelli A, Callone E, et al. A Pieoscale Catalyst for Hydrogen Generation from NaBH4 for Fuel Cell[J]. J Power Sources, 2007, 165 : 315 -323.
  • 9Kim S J, Lee J, Kong K Y, et al. Hydrogen Generation System using Sodium Borohydride for Operation of a 400 W-Scale Polymer Electrolyte Fuel Cell Stack [ J ]. J Power Sources, 2007, 170: 412-418.
  • 10Patel N, Guella G, Kale A, et al. Thin Films of Co-B Prepared by Pulsed Laser Deposition as Efficient Catalysts in Hydrogen Producing Reactions[J]. Appl CatalA, 2007, 323:18-24.

共引文献31

同被引文献10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部