摘要
该文构造了几类非p范数,估计了它们的诱导范数的界;并证明了在方阵情形,这些诱导范数均可应用到有关特征值整体条件数的Bauer-Fike引理中去。
In this paper, three kinds of non-Hlder vector norms are constructed, and their induced norms are designated as ‖·‖ α,‖·‖ β, and ‖·‖ γ respectively. We show that max i,j|a ij |≤‖A‖ α,‖A‖ β,‖A‖ γ≤mi=1nj=1|a ij |. Furthermore, in the square matrix case, we have ‖ diag (d 1,…,d n)‖ α=‖ diag (d 1,…,d n)‖ β=‖ diag (d 1,…,d n)‖ γ= max i{|d i|}. So norms ‖·‖ α,‖·‖ β, and ‖·‖ γ can all be used in the Bauer-Fike lemma with respect to the total condition number for matrix eigenprob lem.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
1999年第2期30-35,共6页
Journal of East China Normal University(Natural Science)
关键词
非p向量范数
诱导范数
矩阵范数
特征值
non-Hlder vector norm induced norm bounds of matrix nor m total condition number matrix eigenproblem