期刊文献+

一类新的含(H,η)-增生算子的变分包含组解的迭代逼近

Iterative Approximation of Solutions for a New Class of Variational Inclusions Involving H,η-accretive Operators
下载PDF
导出
摘要 在q-一致光滑Banach空间中引入和研究了一类新的含(H,η)-增生算子的集值变分包含组问题.利用所定义的(H,η)-增生算子的预解算子,给出了此类变分包含组的迭代算法,并证明了由该算法生成的迭代序列的强收敛性.所得结果改进和推广了最近一些文献中的相应结果. A new class of multi- valued variational inclusions involving (H,η) -accretive operators in q -uni- formly smooth Banach spaces is introduced and discussed. Using the resolvent operator associated with (H,η) - accretive operators, the paper attempts to construct an iterative algorithm for this system and prove the strong convergence of this iterative sequence generated by the algorithm. The result presented in this paper improves and extends the recent findings announced by many others.
作者 王亚琴 吴斌
出处 《绍兴文理学院学报》 2010年第9期12-18,共7页 Journal of Shaoxing University
关键词 q-一致光滑Banach空间 (H η)-增生算子 集值变分包含组 迭代算法 预解算子 q- uniformly smooth Banach space (H,η) -accretive operator multi -valued variational inclusion iterative algorithm resolvent operator
  • 相关文献

参考文献3

二级参考文献30

  • 1AGARWAL R P, CHO Y J, HUANG Nan-jing. Senasitivity analysis for strongly nonlinear quasi-variational Inclusions[J]. Appl Math Lett, 2000, 13(6): 19-24.
  • 2AGARWAL R P, HUANG Nan-jing, CHO Y J. Generalized nonlinear mixed implicit quasi-variational inclusions with set-valued mapping[J]. J. Inequal Appl, 2002, 7(6): 807-828.
  • 3DING Xie-ping, ZENG Liu-chuan. Perturbed proximal point algorithm for generalized quasi-variational-like inclusions[J]. J Comput Appl Math, 2000, 210: 153-165.
  • 4HUANG Nan-jing, FANG Ya-ping. A new class of general variational inclusions involving maxmal r/- monotone mappings[J]. Publ Math Debrecen, 2003, 62(1-2): 83-98.
  • 5FANG Ya-ping, HUANG Nan-jing. H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces[J]. Appl Math Lett, 2004, 17: 647-653.
  • 6XU Hong-kun. Inequalities in Banach spaces with applications[J]. Nonlinear Anal, 1991, 16 (12): 1127-1138.
  • 7KAZMI K R, BHAT M I. Iterative algorithm for a system of nonlinear variational-like inclusions[J]. Com- puters Math Applic 2004, 48: 1929-1935.
  • 8MUHAMMAD Aslam Noor. Equivalence of variational inclusions with resolvent equation[J]. Nonlinear Anal, 2000, 41: 963-970.
  • 9HASSOUNI A, MOUDAFI A. A perturbed algorithm for variational inclusions[J]. J Math Anal Appl, 1994, 185(3): 706-742.
  • 10FANG Ya-ping, HUANG Nan-jing. A new system of variational inclusions with (H, η)-monotone operators in Hilbert spaces[J]. Computers Math Applic, 2005, 49: 365-374.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部