期刊文献+

广义变分不等式问题解的存在性

Existence of a Solution to Generalized Variational Inequalities
下载PDF
导出
摘要 在一般凸集约束下提出广义例外簇的概念,并讨论了广义变分不等式问题V I(K,F,g)解的存在性,给出了VI(K,F,g)有解的充分条件. This paper introduces a concept of generalized exceptional - family for generalized variational inequality problems in RN. Then, it provides a sufficient condition for the existence of a solution to generalized variational inequalities. Such a condition is still necessary when F is pseudo - monotone with respect to g.
出处 《绍兴文理学院学报》 2010年第9期19-22,共4页 Journal of Shaoxing University
关键词 广义例外簇 广义变分不等式 存在性 generalized exceptional family of elements generalized variational inequality existence
  • 相关文献

参考文献3

二级参考文献30

  • 1P. H, Clarke. Optimization and Nonsmooth Analysis[M],Wiley Interseienee,New York, 1983.
  • 2P. T. Harker and J. S. Pang. Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithm, and applications[J]. Math. Program. , 1990,48(2) : 161 - 220.
  • 3G. Isac, Exceptional families of elements, feasibility and complementarity[J]. J. Optim. Theory Appl. ,2000,104 (3) : 577 - 588.
  • 4G. Isac, V. Bulavski. , V. Kalashnikov. Exceptional families,topological degree and complementarity problems[J]. J. Global optim. , 1997,10 : 207-225.
  • 5G. Isac, T. Obuchowska. Functions without exceptional family of elements and complementarity problems[J]. J. Optim. Theory Appl, 1998,99(1) : 147 -163.
  • 6J. J. More. Coercivity conditions in nonlinear complementarity problem[J]. SIAM Rev. 1974,17:1-16.
  • 7J. M. Ortega, W. C, Rheinholdt. Iterative solution of nonlinear equations in several variables[M] New York: Academic Press. 1970
  • 8R. T. Rockafellard. Convex Analysis, Princeton University Press, Princeton[M]. New Jersey, 1970.
  • 9E. H. Zarantonello. Projections on convex sets in Hilbert space and spectral theory[M]. In E. H. Zarantonello ( ed. ) Contributions to Nonlinear Functional Analysis, Academic Press, New York: 1971.
  • 10Y. B. Zhao. Existence of a solution to nonlinear variational inequality under generalized positive homogoneity[J]. Oper. Res. Letters, 1999,25 : 231 - 239.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部