期刊文献+

基于关联规则挖掘的生化企业数据分析及其应用研究 被引量:3

Data analysis based on association rule mining from biochemical dataset and its application
原文传递
导出
摘要 生物化工产品的工业生产,要求有合适的生产环境,由于生产过程的复杂性,掌握适宜的生产环境较为困难。数据挖掘是从现有数据中找规律,可以从历史数据中,找出关联模式,从而获取对决策目标有利的生产环境条件。本文针对生物化工(生化)企业生产的数据特征,基于关联规则挖掘,分析生化企业生产数据,同时结合目前大多数关联规则挖掘算法的数据模型要求,重点论述了环境因子和环境因子数据项的关系,提出将原始数据指标分割成数据项,及分割后的数据项合并为决策目标的方法。由于生化企业生产决策目标的确定性,提出了具有确定性决策项时关联规则挖掘的优化算法,可快速地挖掘感兴趣的频繁数据项集。在此基础上,开发了具有数据预处理(环境指标分割)、关联知识发现、结果生成的应用系统,对系统做了初步试验和分析,从系统输出的结果中,可以辅助企业进行生产环境的优化。研究表明,用关联规则挖掘分析生化企业数据是有效的。 An optimized producing environment is a key issue in bio-chemical industry production. Due to the complex mechanism of bio-chemical production, understanding the favorable environment is very difficult. A great amount of data has been accumulated through industry production over years. It is possible to find out valuable rules that may contribute to the improvement of production efficiency and quality through data mining and association rule mining. By analyzing the feature of biochemical production dataset, this paper proposed the method of separating and merging environmental indexes and decision indexes to generate a ready-to-use dataset. Based on the generated dataset, an optimized algorithm to extract strong association rules was suggested. The proposed algorithm aimed at mining association rules with determined items and thus the computation complexity is greatly increased. To further explain the applications of the mined rules in bio-chemical industry, possible use of the rules is introduced specifically in the field of experiment/lab design during optimized variable selection. Result shows that association mining can be applied in environment condition control in industry production. A software prototype was built to mine association rules from an available dataset which proved to be successful.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2010年第9期1252-1256,共5页 Computers and Applied Chemistry
关键词 关联规则挖掘 系统开发 生化企业 决策目标 association rule, data mining, bio-chemical enterprise, decision
  • 相关文献

参考文献5

二级参考文献59

  • 1周焕银,张永,蔺鹏.一种不产生候选项挖掘频繁项集的新算法[J].计算机工程与应用,2004,40(15):182-185. 被引量:14
  • 2Witten I H.Frank E.Data Mining:Practical Machine Learning Tools and Techniques[M].北京:机械工业出版社,2006.
  • 3Tan Pangning, Steinbach M, Kumar V. Introduction to DataMining[M].北京:人民邮电出版社,2006.
  • 4[2]Agrawal R,lmielinski T,Swami A.Mining Association Rules be-tween Sets of Items in Large Databases.//In:Proc.of the 1 993ACM-SIGMOD[C].Washington,DC:International Conferenceon management of Data,1993.207-216
  • 5[4]Shekhar S,Zhang P,Huang Y,et al.Trends in Spatial Data Min-ing//In:H.Kargupta,A.Joshi(Eds.),Data Mining:Next Gener-ation Challenges and Future Directions[C].AAAI/MIT Press.2003.357-380
  • 6[5]Li Y,Zhu S,Wang X S,et al..Looking into the Seeds oftime:Dis-covering Temporal Patterns in large transaction sets[J].Informa-tion Sciences,2006,176:1003-1031
  • 7[7]Srikant R,Agrawal R.Mining Generalized Association Rule//.In:Proc.of the 21th VLDB Conference,Zurich[C].Switzerland:1995.407-419
  • 8[8]Han J,Fu Y.Discovery of Multi-level Association Rules fromLarge Databases.//In:Proc.of the 21th VLDB Conference[C].Switzerland:Zurich.1995.420-43l
  • 9[9]Srikant R,Agrawal R.Mining Quantitative Association Rules inLarge Relational Tables.//In:Proc.of the 1 996 ACM SIGMOD Conference[C]Montreal,Quebec,Canada.1996,6-12
  • 10[10]Lin M Y,Lee S V.Interactive Sequence Discovery by Incremental Mining[J].Information Sciences.2004.165:187-205

共引文献188

同被引文献33

  • 1姜求宇,吴文伟,廖森,宋宝玲,谭国进.固相合成纳米氧化镍及其数据挖掘的研究[J].应用化工,2004,33(3):18-21. 被引量:7
  • 2何朝阳,赵剑锋,江水.最大值控制的多最小支持度关联规则挖掘算法[J].计算机工程,2006,32(11):103-105. 被引量:10
  • 3Chen CY,,Shyue SW,Chang CJ.Association rule mining forevaluation of regional environments:case study of dapengbay,taiwan. International Journal of Innovative ComputingInformation and Control . 2010
  • 4赵卫民;吴勋;孟宪君.武器装备论证学[M]北京:兵器工业出版社,200831-32.
  • 5毛国君;段立娟;王实.数据挖掘原理与算法[M]北京:清华大学出版社,200767-68.
  • 6MABU S,SHIMADA K. Fuzzy inter transaction class association rule mining using genetic network programming for stock market prediction[J].IEEE Trans on Electrical and Electronic Engineering,2011,(04):2697-2750.
  • 7ZHANG Xiao-hui,LIU Zheng-jiang. Analysis of multi-dimension association rule in marine casualties[A].2011.2697-2705.
  • 8ENGLE K M,RADA R. A top-k analysis using multilevel association rule mining for autism treatments[A].Beilin:Springer-Verlag,2011.328-334.
  • 9叶义成;柯丽华;黄德育.系统综合评价技术及其应用[M]北京:冶金工业出版社,200618-19.
  • 10迈克伦南;唐朝晖;克里沃茨;董艳;程文俊.数据挖掘原理与应用[M]北京:清华大学出版社,2007.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部