期刊文献+

Minimax问题的一个滤子算法

A Filter Algorithm for Minimax Problems
下载PDF
导出
摘要 本文提出一个求解不等式约束的Minimax问题的滤子算法,结合序列二次规划方法,并利用滤子以避免罚函数的使用.在适当的条件下,证明了此方法的全局收敛性及超线性收敛性.数值实验表明算法是有效的. In this paper,a filiter algorithm is proposed to solve Minimax problems with inequality constrains.Based on the sequential quadratic programming method,the penalty function is not required by filter strategy.Under some suitable conditions,the global convergence and superlinear convergence are obtained.Some numerical results show that the method in this paper is effective.
作者 杨晓辉
出处 《运筹学学报》 CSCD 2010年第3期109-121,共13页 Operations Research Transactions
基金 国家自然科学基金(No.61071018)
关键词 运筹学 Minimax优化问题 滤子方法 全局收敛 超线性收敛 Operations research minimax optimization problems filter method global convergence superlinear convergence
  • 相关文献

参考文献6

二级参考文献27

  • 1李兴斯.信息熵在优化问题中的应用[J].运筹学杂志,1989,8(1):47-52. 被引量:3
  • 2[1]Vardi A. New minimax algorithm. Journal of Optimization Theory and Application, 1992, 75(3):613-634.
  • 3[2]Luksan L. A compact variable metric algorithm for nonlinear minimax approximation. Computing, 36: 355-373.
  • 4Charelambous, C., and A. R. Conn, An efficient method to solve the Minimax problem directly.SIAM J. Numer. Anal., 15(1978) 162-187.
  • 5Panier, E. R., and A. L. Tits, A Superlinearly Convergent Feasible Method for the Solution of Inequality Constrained Optimization Problems. SIAM J. Control and Optimization, 25(1987)934-950.
  • 6Facchinei, F., S. Lucidi, Quadraticly and Superlinearly Convergent for the Solution of Inequality Constrained Optimization Problem. JOTA, 85:2(1995) 265-289.
  • 7Bandler, J. W., and C. Charalambous, Nonlinear programming using minimax techniques. JOTA,13(1974) 607-619.
  • 8Polak, E., D. Q. Mayne, and J. E., Higgins, Superlinearly convergent algorithm for Min-Max problems. JOTA, 69(1991) 407-439.
  • 9Polyak, R. A., Smooth optimization methods for Minimax problems. SIAM J. Control and Optimization, 26(1988) 1274-1286.
  • 10Powll, M. J. D., A fast algorithm for nonlinearly constrained optimization calculations. In:Waston, G. A. (ed). Numerical Analysis. Springer, Berlin, 1978, 144-157.

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部