摘要
Ultrasonic interferometry was utilized in conjunction with synchrotron-based X-ray diffraction and X-radiographic imaging to determine the compressional and shear wave velocities and unlt-cdl volumes of pyrite (FeS2) at room temperature and pressures up to 9.6 GPa. Fitting all of the experimental volume and velocity data to third-order finite-strain equations yielded the adiabatic zero-pressure bulk and shear moduli and their first pressure derivatives: Ks0=138.9(7) GPa, Go=U2.3(3) GPa, (δKS0/δP)T=KS0'=6.0(1), (δG0/δP)T=G0'=3.0(〈1), where the numbers in parentheses represent the 1δ uncertainty in the last significant digit. These results are in good agreement with several previous static compression studies on this material but differ quite strongly from the results obtained via first principles calculations. This study presents the first direct measurement of the bulk shear properties of this material.
Ultrasonic interferometry was utilized in conjunction with synchrotron-based X-ray diffraction and X-radiographic imaging to determine the compressional and shear wave velocities and unlt-cdl volumes of pyrite (FeS2) at room temperature and pressures up to 9.6 GPa. Fitting all of the experimental volume and velocity data to third-order finite-strain equations yielded the adiabatic zero-pressure bulk and shear moduli and their first pressure derivatives: Ks0=138.9(7) GPa, Go=U2.3(3) GPa, (δKS0/δP)T=KS0'=6.0(1), (δG0/δP)T=G0'=3.0(〈1), where the numbers in parentheses represent the 1δ uncertainty in the last significant digit. These results are in good agreement with several previous static compression studies on this material but differ quite strongly from the results obtained via first principles calculations. This study presents the first direct measurement of the bulk shear properties of this material.
基金
supported by the USA National Science Foundation (Nos. EAR00135550, EAR0635860) to Baosheng Li,the USA Department of Energy, Office of Science, Office of Basic Energy Sciences (No. DE-AC02-98CH10886)
the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement (No. EAR01-35554)
the Mineral Physics Institute, Stony Brook University (MPI Publication No. 480)