期刊文献+

Ab Initio Two-Phase Molecular Dynamics on the Melting Curve of SiO_2

Ab Initio Two-Phase Molecular Dynamics on the Melting Curve of SiO_2
原文传递
导出
摘要 Ab initio two-phase molecular dynamics simulations were performed on silica at pressures of 20-160 GPa and temperatures of 2 500-6 000 K to examine its solid-liquid phase boundary. Results indicate a melting temperature (Tin) of 5 900 K at 135 GPa. This is 1 100 K higher than the temperature considered for the core-mantle boundary (CMB) of about 3 800 K. The calculated melting temperature is fairly consistent with classical MD (molecular dynamics) simulations. For liquid silica, the O-O coordination number is found to be 12 along the Tm and is almost unchanged with increasing pressure. The self-diffusion coefficients of O and Si atoms are determined to be 1.3×10^-9-3.3×10^-9 m2/s, and the viscosity is 0.02-0.03 Pa's along the Tin. We find that these transport properties depend less on pressure in the wide range up of more than 135 GPa. The eutectic temperatures in the MgO-SiO2 systems were evaluated and found to be 700 K higher than the CMB temperature, though they would decrease considerably in more realistic mantle compositions. Ab initio two-phase molecular dynamics simulations were performed on silica at pressures of 20-160 GPa and temperatures of 2 500-6 000 K to examine its solid-liquid phase boundary. Results indicate a melting temperature (Tin) of 5 900 K at 135 GPa. This is 1 100 K higher than the temperature considered for the core-mantle boundary (CMB) of about 3 800 K. The calculated melting temperature is fairly consistent with classical MD (molecular dynamics) simulations. For liquid silica, the O-O coordination number is found to be 12 along the Tm and is almost unchanged with increasing pressure. The self-diffusion coefficients of O and Si atoms are determined to be 1.3×10^-9-3.3×10^-9 m2/s, and the viscosity is 0.02-0.03 Pa's along the Tin. We find that these transport properties depend less on pressure in the wide range up of more than 135 GPa. The eutectic temperatures in the MgO-SiO2 systems were evaluated and found to be 700 K higher than the CMB temperature, though they would decrease considerably in more realistic mantle compositions.
出处 《Journal of Earth Science》 SCIE CAS CSCD 2010年第5期801-810,共10页 地球科学学刊(英文版)
基金 supported by the Japan Society for the Promo-tion of Science (No. 21740330) to Yusuke Usui, (No. 19740331) to Taku Tsuchiya, a fellowship from the Global-COE program "Deep Earth Mineralogy" to Yusuke Usui
  • 相关文献

参考文献40

  • 1Alfe, D., 2005. Melting Curve of MgO from First-Principles Simulations. Phys. Rev. Lett., 94(23): 235701.
  • 2Alfe, D., Kresse, G., Gillan, M. J., 2000. Structure and Dynamics of Liquid Iron under Earth's Core Conditions. Phys. Rev. B, 61(1): 132-142.
  • 3Allen, M. J., Tildesley, D. J., 1987. Computer Simulation of Liquids. Oxford University Press, Oxford.
  • 4Andrault, D., Fiquet, G., Guyot, F., et al., 1998. Pressure- Induced Landau-Type Transition in Stishovite. Science, 282(5389): 720-724.
  • 5Belonoshko, A. B., 1994. Molecular-Dynamics of MgSiO3 Perovskite at High-Pressures-Equation of State, Structure, and Melting Transition. Geochim. Cosmochim. Acta, 58(19): 4039-4047.
  • 6Belonoshko, A. B., 2001. Molecular Dynamics Simulations of Phase Transitions and Melting MgSiO3 with the Perovskite Structure-Comment. Am. Mineral., 86(1-2): 193-194.
  • 7Belonoshko, A. B., Arapan, S., Martonak, R., et al., 2010. MgO Phase Diagram from First Principles in a Wide Pressure-Temperature Range. Phys. Rev. B, 81(5): 054110.
  • 8Belonoshko, A. B., Dubrovinsky, L. S., 1995. Molecular Dynamics of Stishovite Melting. Geochim. Cosmochim. Acta, 59(9): 1883-1889.
  • 9Belonoshko, A. B., Durbrovinsky, L. S., Dubrovinsky, N. A., 1996. A New High-Pressure Silica Phase Obtained by Molecular Dynamics. Am. Mineral., 81(5-6): 785-788.
  • 10Belonoshko, A. B., Skorodumova, N. V., Rosengren, A., et al., 2005. High-Pressure Melting of MgSiO3. Phys. Rev. Lett., 94(19): 195701.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部