期刊文献+

一类捕食-食饵模型非常数正解的存在性 被引量:1

The Existence of Non-constant Positive Solution of the Predator-prey Model
下载PDF
导出
摘要 运用分歧理论和度理论讨论了一类捕食-食饵模型在齐次Neumann边界条件下非常数正解的存在性,得到了系统在分歧点(d~2,~u)处存在非常数正解,即给出了正解的局部存在性条件。 The existence of non-constant positive solution of the predator-prey model with homogeneous Neumann boundary is discussed by the methods of bifurcation theory and degree theory.Some existence conditions for non-constant positive solution are given.
出处 《科学技术与工程》 2010年第28期6963-6966,6982,共5页 Science Technology and Engineering
基金 国家自然科学基金(10571115) 陕西省自然科学基础研究资助项目(2007A11)课题资助
关键词 捕食-食饵模型 非常数正平衡解 存在性 predator-prey model non-constant positive solution existence
  • 相关文献

参考文献10

  • 1Su M,Hui C,Zhang Y Y.Spatiotemporal dynamics of the epidemic transmission in a predator-prey system.Bulletin of Mathematical Biology,2008;70:2 195-2 210.
  • 2Berec L,Boukal D S,Berec M.Linking the Allee effect,sexual reproduction,and Temperature-dependent sex determination via spatial dynamics.Am,Nat,2001;157:217-230.
  • 3权利娜.一类带有Allee影响和病毒传播的捕食食饵模型的正平衡态[J].计算机工程与应用,2011,47(22):44-47. 被引量:3
  • 4Lin C S,Ni W M.Large amplitude stationary solution to a chemotaxis system.J Differential Equations,1988;72:1-27.
  • 5Lou Y,Ni W M.Diffusion,self-diffusion and cross-diffusion.Differential Equations,1996;131:79-131.
  • 6Wang M X.Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and diffusion.Physica D,2004;196:172-192.
  • 7Smoller J.Shock waves and reaction-diffusion equations,(Second Edition).New York:Springer-Verlag,1994.
  • 8Henry D.Geometric theory of semilinear parabolic equations.Lecture Notes in Mathematics.Berlin,New York:Springer-Verlag,1993:840.
  • 9钟承奎,范先令,陈文原.非线性泛函分析引论.兰州:兰州大学出版社,2004.
  • 10Rabinowita P H.Some global result for nolinear eigenvalue problems.J Funct Anal,1971:487-513.

二级参考文献8

  • 1Su M, Hui C, Zhang Y Y.Spatiotemporal dynamics of the epi- demic transmission in a predator-prey system[J].Bulletin of Mathematical Biology,2008,70:2195-2210.
  • 2Beree L, Boukal D S, Beree M.Linking the Allee effeet, sexual reproduction, and temperature-dependent sex determination via spatial dynamics[J].Am Nat,2001,157:217-230.
  • 3Mareos L, Julio M.On the dynamics of a ratio dependent predator-prey System with diffusion and delay[J].Diserete and Contin- uous Dynamical Systems-Series B,2006,6:1321-1338.
  • 4Wang M X.Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and dif- fusion[J].Physiea D, 2004,196: 172-192.
  • 5Lou Y, Ni W M.Diffusion, self-diffusion and cross-diffusion[J].J Differential Eqtiafions, 1996,131 : 79-131.
  • 6Lin C S,Ni WeiMing, Takagi.Large amplitude stationary solution to a ehemotaxis system[J].J Differential Equations, 1988, 72:1-27.
  • 7Smoller J.Shock waves and reaction-diffusion equations[M].2nd ed. New York: Springer-Verlag, 1994.
  • 8Henry D.Geometric theory of semilinear parabolic equations[M]// Lecture Notes in Mathematics.New York:Springer-Verlag, 1993.

共引文献4

同被引文献12

  • 1Ricci C.Dormancy patterns in rotifers[J].Hydrobiologia,2001, 446: 1-11.
  • 2Hairston N G, Hansen A M, Schaffner W R.The effect ofdiapause emergence on the seasonal dynamics of a zooplank- ton assemblage[J].Freshw Biol, 2000,45 : 133 - 145.
  • 3Cyllstrom M ,Hansson L A.Dormancy in freshwater zooplank- ton: induction, termination and the importance of benthic-pe- lagic coupling[J].Aquat Sci,2004,66:274-295.
  • 4Carvalho G R.Hughes R N.Effect of food availability, female culture-density and photoperiod on ephippia production in Daphniamagna Strauss(Crustacea;Cladocera)[J].Freshw Biol, 1983,13 : 37-46.
  • 5Alekseev V, Lampert W.Maternal control of resting-egg pro- duction in Daphnia[J].Nature, 2001,414 : 899-901.
  • 6Smoller J.Shock waves and reaction-diffusion equation[M]. 2nd ed.New York:Springer-Verlag, 1994.
  • 7Baxley J V,Thompson H B.Nonlinear boundary value prob- lems and competition in the chemostat[J].Nonlinear Anal, 1994,22: 1329-1344.
  • 8Wu J H.Global bifurcation of coexistence state for the com- petition model in the chemostat[J].Nonlinear Anal,2000,39: 817-835.
  • 9李津,李艳玲.一类反应扩散方程组平衡解的局部分歧及稳定性[J].陕西师范大学学报(自然科学版),2008,36(2):15-18. 被引量:4
  • 10权利娜,李艳玲.一类互惠模型平衡解的分歧与稳定[J].科学技术与工程,2010,10(3):625-629. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部