期刊文献+

预条件后新分裂下的Gauss-Seidel迭代法收敛性讨论 被引量:1

The Convergence Discussion of the Gauss-Seidel Iterative Method in the New Matrix Splitting
下载PDF
导出
摘要 针对Gauss-Seidel迭代法求解大型线性方程组Ax=b时,结合矩阵分裂理论及比较定理,给方程两边同时左乘非奇异矩阵P(也称为预条件矩阵),对新的系数矩阵PA进行矩阵分裂时,引入参数α,以使矩阵分裂更加一般化,说明这种方法不仅能加速Gauss-Seidel迭代法的收敛,而且优于一般的预条件方法。最后给出一个数值例子。 The Gauss-Seidel iterative method is discussed to solve the large linear system Ax=b by using matrix iterative analysis and comparison theorems,make the nonsingular matrix P( preconditioned matrix )to left multiply the linear system two-sided.The parameter α is pull in to splitting the new coefficient matix,then prove the improved method not only to accelerate the Gauss-Seidel iterative method,but also to excel the general preconditioned method.Last the numerical example is given.
作者 雷刚
出处 《科学技术与工程》 2010年第27期6610-6613,共4页 Science Technology and Engineering
基金 宝鸡文理学院重点项目基金(ZK09126)资助
关键词 预条件 收敛性 GAUSS-SEIDEL迭代法 谱半径 precondition convergence the SOR iteration method spectral radius
  • 相关文献

参考文献7

  • 1Niki H,Harada K,Morimoto M,et al.The survey of preconditioners used for accelerating the rate of convergence in the Gauss-Seidel method.Journal of Computational and Applied Mathematics,2004;165:587-600.
  • 2Yun J H.A note on the modified SOR method for Z-matrices.Applied Mathematics and Computation,2007;194:572-576.
  • 3Huang T Z,Cheng G H,Cheng X Y.Modified SOR-type iterative method for Z-matrices.Applied Mathematics and Computation,2006;175:258-268.
  • 4Yong D M.Iterative solution of large linear systems.New York:Academic Press,1971.
  • 5Varga R S.Matrix iterative analysis.Heidelberg:Spring-Verlag,2000.
  • 6Schneider H.Which depend on graph structure.Linear Algebra Application,1984;58:407-424.
  • 7Wang Xuezhong,Huang Tingzhu,Fu Yingding.Comparison results on preconditioned SOR-type iterative method for Z-matrices linear systems.Journal of Computational and Applied mathematics,2007;(206):726-732.

同被引文献8

  • 1方保镕 周继东 李医民.矩阵论[M].北京:清华大学出版社,2004..
  • 2胡家赣.线性方程组的迭代解法[M].北京:科学出版社,1997.
  • 3Kohno T, Kotakemori H. Improving the modified gauss-seidel method for z-matrices [ J]. Linear Algebra Appl, 1997, 267(11) : 113-123.
  • 4Hadjidimos A. Accelerated over-relaxtion mehod[J]. Math. Comput, 1978, 32(141 ) : 149-157.
  • 5Varga R S. Matrix iterative analysis, prentice-Hall[ M ]. Englewood cliffs, NJ. 1962.
  • 6Yip E L. A necessary and sufficient condition for m-matrices and its relation to block LU factorizationE J. Linear Algebra and its Applications, 1995, 235( 1 ) : 261-274.
  • 7石艳超,徐安农.预条件Gauss-Seidel迭法[J].2008.3(28):258-260.
  • 8常岩磊,张国凤,赵景余.新的预条件AOR迭代法和新的比较定理[J].兰州大学学报(自然科学版),2009,45(1):112-114. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部