摘要
本文先对网站日志文件进行研究并预处理,将用户访问网站形成的日志文件转换成用户访问模式;接着用对用户访问模式进行K-mean聚类分析,提取具有代表性的用户访问模式;最后用协同过滤推荐技术向网站访问者进行推荐,提供个性化服务,从而实现网站的个性化推荐。
This article firstly researching and preprocessing the original web log data to website visit pattern. Then, we use the K-mean Clustering algorithm to cluster the website visit patterns, finally, we use collaborative filteringbased recommendation technology to provide the website visitors the personalized services so as to generate personalized recommendation.
关键词
协同过滤
WEB日志挖掘
推荐系统
Collaborative Filtering Web Log Mining Recommendation Systems